
The Journal of Systems and Software 110 (2015) 136–154

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A goal-oriented approach for representing and using design patterns

Luca Sabatucci a,∗, Massimo Cossentino a, Angelo Susi b

a ICAR-CNR, Palermo, Italy
b Fondazione Bruno Kessler, Trento, Italy

a r t i c l e i n f o

Article history:

Received 13 February 2014

Revised 27 July 2015

Accepted 29 July 2015

Available online 11 August 2015

Keywords:

Design patterns

Goal modeling

Goal reasoning

a b s t r a c t

Design patterns are known as proven solutions to recurring design problems. The role of pattern documen-

tation format is to transfer experience thus making pattern employment a viable technique. This research

line proposes a goal-oriented pattern documentation that highlights decision-relevant information. The con-

tribution of this paper is twofold. First, it presents a semi-structural visual notation that visualizes context,

forces, alternative solutions and consequences in a compact format. Second, it introduces a systematic reuse

process, in which the use of goal-oriented patterns aids the practitioner in selecting and customizing design

patterns. An empirical study has been conducted the results of which supports the hypothesis that the goal-

oriented format provides benefits for the practitioner. The experiment revealed a trend in which solutions

better address requirements when the subjects are equipped with the new pattern documentation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Software patterns are known as proven solutions to recurring

problems in the design and the implementation of software systems

Buschmann et al. (1996). This common definition has been refined

many times over the years. An interesting definition mentions pat-

terns as instruments for taking decisions during software develop-

ment Zdun (2007); Gross and Yu (2001); Araujo and Weiss (2002).

The importance of this observation is that the quality of a software

product is highly dependent on the design phase in which strategic

decisions are made that remain with the system for the rest of the de-

velopment. Bad design decisions generally negatively affect the final

product Yacoub et al. (2000). Software patterns help inexpert devel-

opers to assess the impact of a decision when the final product is not

mature enough to evaluate if a decision is good or not Yacoub et al.

(2000).

Since their invention, the response of the research community

has been enthusiastic: practitioners have assisted to a phenomenon

of proliferation of the categories of patterns, and to an impressive

number of collections of patterns addressing a fairly extensive set of

problem domains Henninger and Corrêa (2007); Rising (2000); Cline

(1996). Patterns exist for solving architectural issues Buschmann et al.

(1996), object-oriented design Gamma et al. (1995), coordination and

process problems van Der Aalst et al. (2003), parallel and concurrency

∗ Corresponding author. Tel.: +393936478191.

E-mail addresses: sabatucci@pa.icar.cnr.it (L. Sabatucci), cossentino@pa.icar.cnr.it

(M. Cossentino), susi@fbk.eu (A. Susi).

execution Schmidt et al. (2013), security concerns Schumacher et al.

(2013) and so on. For instance, the Pattern Almanac Rising (2000),

published in the year 2000, contains over 1000 patterns. Such a pro-

liferation also generated many duplicates, i.e. patterns that are vari-

ants of the same design principle Henninger and Corrêa (2007). For

instance the Extended Observer UIUC (0000) and the Middle Ob-

server Iaría and Chesini (1998) consider specific application contexts

of the original Observer pattern Gamma et al. (1995).

The value of design patterns is that of being the result of expe-

rience on the field gained over several years of trial-and-error at-

tempts. Using a pattern during software development consists in

exploiting a well-proven solution, with general benefits on soft-

ware quality Riehle (2011) and on maintenance process Prechelt

et al. (2002); Duell (2001). Nevertheless the use of patterns in soft-

ware development practices is far from being trivial. A software

pattern is generally less tangible but more flexible than code. A

class library provides a collection of classes and methods to use

in a black-box fashion. Conversely a pattern is generally described

by highlighting a relation between a certain context, a problem,

and a solution Buschmann et al. (1996), and it specifies a level

of abstraction that is above the level of classes or components.

Therefore a pattern is harder to use because its abstractions must

first be understood and later be instantiated in specific problem

Riehle (2011).

The most common format for the documentation of patterns is

basically text with some visual support and code examples. Advan-

tages are in the richness and flexibility of the natural language and

the way it fosters human creativity. Shortcomings are in the poten-

tial ambiguity and the average length (in number of pages) necessary

http://dx.doi.org/10.1016/j.jss.2015.07.040

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.07.040
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.07.040&domain=pdf
mailto:sabatucci@pa.icar.cnr.it
mailto:cossentino@pa.icar.cnr.it
mailto:susi@fbk.eu
http://dx.doi.org/10.1016/j.jss.2015.07.040


L. Sabatucci et al. / The Journal of Systems and Software 110 (2015) 136–154 137

for documenting all the details that tend to be spread among many

sections of the documentation.

The research community has spent much effort in improving

pattern documentation by increasing the level of formalization and

the integration with design processes and techniques Zdun (2007);

Gross and Yu (2001); Mikkonen (1998); Yacoub and Ammar (2001).

Nevertheless most of these approaches are not able to fully represent

the abundance of details (for instance they fail to represent alterna-

tive and decision points in the solution). In addition, mainly focusing

on the solution side, they raise the risk that practitioners confuse a

design pattern with its structure diagram Riehle (2011).

The overall objective of this paper is to propose a novel approach

for describing patterns that, on one hand, preserve all the details and,

on the other hand, makes accessible the decision-relevant informa-

tion such as motivation, alternatives, consequences, and forces.

The idea is that, regardless of the category of the pattern, the com-

mon element of many pattern descriptions is the design rationale, i.e.

a set of design goals, design decisions and expected consequences

in terms of software qualities. In other words, applying the patterns

is similar to making a design decision, which is a cognitive process

concerning forces to balance Zdun (2007); Gross and Yu (2001) and

design decisions to take McPhail and Deugo (2001); Harrison et al.

(2007) in order to configure the elements of the system for solving a

specific design problem.

Our first contribution is a goal-oriented approach for document-

ing patterns based on the i∗ strategic modeling Yu (1996), a concep-

tual framework for modeling cognitive processes and strategic con-

texts. The main concepts of i∗ are exploited for representing, in a

semi-formal notation, a software pattern by preserving all the de-

tails that the textual format provides. The i∗ notation was built for

modeling strategic dependencies in the context of requirements en-

gineering, but it is general enough to be used in many other organi-

zational application settings. By exploiting this general-purpose na-

ture, the goal-oriented pattern documentation was constructed to be

independent of the programming paradigm and the specific category

of the pattern. Despite the fact that the notation revealed itself to be

expressive enough to document a number of software patterns be-

longing to different categories existing in literature Iaría and Chesini

(1998); Riehle (1998); Wallingford (1997), this paper primarily shows

examples of architectural and design patterns taken from the GoF’s

book Gamma et al. (1995) or from the Pattern Oriented Software

Architecture book series Buschmann et al. (1996). Only one example

of a workflow pattern van Der Aalst et al. (2003) has been added for

discussing independence from the domain.

The second contribution is a systematic process in which the goal-

oriented documentation format plays a central role during the soft-

ware development. The process includes guidelines for a methodical

exploration of context problem and forces with the aim of improve

the pattern selection activity. In addition the process provides guide-

lines for driving the practitioner to focus on the design decisions to

take for customizing its solution for the specific problem context.

Finally, we report an empirical study conducted to investigate to

which extent the goal-oriented format and the related process may

offer benefits for practitioner. We empirically observed that class di-

agrams, created through pattern employment, better meet require-

ments when inexpert designers are equipped with the goal-oriented

documentation format of the patterns. We argue that describing pat-

terns through goals discourages the bad practice of using solutions as

code templates; conversely it fosters developers to reason with high

level concepts that the pattern embeds and it increases their ability

to customize the pattern for the specific problem domain.

This paper is organized as follows. Section 2 analyzes the state

of the art and sets up the background for the proposed approach.

Section 3 presents the notation used for the goal-oriented pat-

tern documentation. Section 4 illustrates the employment of goal-

oriented patterns in a systematic process in which goals aids at

discovering which one to use and how to customize it for the spe-

cific problem context. Section 5 illustrates an experiment to substan-

tiate our claims. Some remarks about the proposed approach are re-

ported in Section 6 and finally, conclusions are drawn in Section 7.

Three complete examples of goal-oriented pattern descriptions are

reported in Appendix.

2. Background for the proposed approach

The most common format for the documentation of patterns is

basically natural language with some visual support and code exam-

ples. Depending on the category of pattern the documentation struc-

ture slightly changes including a different set of sections. For instance

a GoF’s pattern is documented through name, intent, motivation, ap-

plicability, structure, participants, collaborations, consequences, im-

plementation, sample code, known uses and related patterns. On the

other side, a POSA pattern does not explicitly include intent, col-

laborations and participants, adding a summary, a solution, dynam-

ics and variants. The strengths of such format are due to the natu-

ral language: the verbosity and the flexibility allow conveying com-

plex abstractions. This format has been conceived to foster interpre-

tation and creativity. The shortcomings are the potential ambiguity

of the natural language, the average length (in number of pages) and

the redundancy of details that are spread among many sections of the

documentation.

The design pattern community spent much effort in improving

the pattern documentation by raising the level of formalization and

the integration with design process and techniques. It is possible to

mention declarative Eden et al. (1998); Mapelsden et al. (2002), for-

mal Mikkonen (1998), UML based Yacoub and Ammar (2001) and se-

mantics approaches Zdun (2007); Gross and Yu (2001); Araujo and

Weiss (2002); Sabatucci et al. (2009). A review is proposed below.

2.1. Formal and semi-formal pattern documentation

Eden et al. propose LePUS Eden et al. (1998), a declarative pat-

tern specification language that uses higher order monadic logic

to express pattern solutions. LePUS is based on abstractions of de-

sign elements, such as classes, methods, and code and it also in-

cludes a visual notation for representing formula of the language. It

is strongly based on mathematics and formal logic. They propose a

tool, based on Prolog without support for the visual notation. A critic

Mapelsden et al. (2002) moved to the framework is that, despite the

compact form of the visual notation, it often includes too many dif-

ferent syntactic elements making the diagram difficult to interpret.

In a successive work, Mak et al. (2003) propose an extension (ExLe-

PUS) of the initial framework for a better integration with CASE tools

also discussing the problem of compound patterns. Patterns contain

slots that are filled by other patterns to produce an interconnected

architecture.

Mikkonen proposes DisCo Mikkonen (1998), (Distributed Co-

operation) which uses a form of Temporal Logic of Actions to for-

mally describe constraint interactions for reactive systems. Therefore,

while LePUS focuses on the static aspects of patterns, DisCo is pri-

marily concerned with behavioral aspects. The framework allows for

managing interactions among objects whose correctness is ensured

by property-preserving refinements.

Both LePUS and DisCo (and their available extensions) greatly re-

duce the ambiguity of the pattern solution, but they must be com-

plemented with the traditional documentation for what concerns

the other aspects of pattern description. Another note is that the

proposed level of formalization requires special skills to interpret

formula.

In addition, many semi-formal approaches exist in literature, most

of which are based on UML Kim et al. (2003); France et al. (2004);

Sunyé et al. (2000); Mak et al. (2004); Dong (2002) so to be easily



Download	English	Version:

https://daneshyari.com/en/article/6885567

Download	Persian	Version:

https://daneshyari.com/article/6885567

Daneshyari.com

https://daneshyari.com/en/article/6885567
https://daneshyari.com/article/6885567
https://daneshyari.com/

