
The Journal of Systems and Software 110 (2015) 205–221

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Using simulation to evaluate error detection strategies: A case study of

cloud-based deployment processes

Jie Chen a,e,∗, Xiwei Xu b, Leon J. Osterweil c, Liming Zhu b,d, Yuriy Brun c, Len Bass b,d,
Junchao Xiao a,f, Mingshu Li a,f, Qing Wang a,f

a Laboratory for Internet Software Technologies, Institute of Software, Chinese Academy of Sciences, Beijing, China
b NICTA (National ICT Australia), Australian Technology Park, Eveleigh, Australia
c College of Information and Computer Sciences, University of Massachusetts, Amherst, MA, USA
d School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
e University of Chinese Academy of Sciences, Beijing, China
f State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

a r t i c l e i n f o

Article history:

Received 2 December 2014

Revised 12 July 2015

Accepted 25 August 2015

Available online 6 September 2015

Keywords:

Process modeling

Simulation

Deployment process

a b s t r a c t

The processes for deploying systems in cloud environments can be the basis for studying strategies for detect-

ing and correcting errors committed during complex process execution. These cloud-based processes encom-

pass diverse activities, and entail complex interactions between cloud infrastructure, application software,

tools, and humans. Many of these processes, such as those for making release decisions during continuous

deployment and troubleshooting in system upgrades, are highly error-prone. Unlike the typically well-tested

deployed software systems, these deployment processes are usually neither well understood nor well tested.

Errors that occur during such processes may require time-consuming troubleshooting, undoing and redoing

steps, and problem fixing. Consequently, these processes should ideally be guided by strategies for detect-

ing errors that consider trade-offs between efficiency and reliability. This paper presents a framework for

systematically exploring such trade-offs. To evaluate the framework and illustrate our approach, we use two

representative cloud deployment processes: a continuous deployment process and a rolling upgrade process.

We augment an existing process modeling language to represent these processes and model errors that may

occur during process execution. We use a process-aware discrete-event simulator to evaluate strategies and

empirically validate simulation results by comparing them to experiences in a production environment. Our

evaluation demonstrates that our approach supports the study of how error-handling strategies affect how

much time is taken for task-completion and error-fixing.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Understanding and evaluating complex real-world processes are

made more difficult by the challenges in understanding how strate-

gies for diagnosing and repairing errors affect the results produced by

these processes. For example, domain experts intuitively know that

human-executed process steps are relatively slower and more error-

prone than automated steps, but might be more amenable to interac-

tive error diagnosis and the prevention of overreaction by automated

∗ Corresponding author at: Laboratory for Internet Software Technologies, Institute

of Software, Chinese Academy of Sciences, Beijing, China. Tel.: +86 13466401225.

E-mail addresses: chenjie@itechs.iscas.ac.cn (J. Chen), Xiwei.Xu@nicta.com.au

(X. Xu), ljo@cs.umass.edu (L.J. Osterweil), Liming.Zhu@nicta.com.au (L. Zhu),

brun@cs.umass.edu (Y. Brun), Len.Bass@nicta.com.au (L. Bass), xiaojunchao@

itechs.iscas.ac.cn (J. Xiao), mingshu@itechs.iscas.ac.cn (M. Li), wq@itechs.iscas.ac.cn

(Q. Wang).

error recovery systems. Intuition also suggest that scripts can reduce

errors and perform steps much faster than humans can, but that the

use of scripts can propagate errors much more quickly and make er-

ror diagnosis more difficult. Similarly, common sense suggests that

meticulously verifying the outcome of each step at a lower-level of

granularity in an operational process helps to prevent downstream

failures, but that doing so is expensive and can slow down the over-

all process. Informal guidelines are widely used in some application

domains to decide which steps should be performed by humans and

which by scripts, but such guidelines are often weakly justified. Such

weakly justified guidelines are also often used to decide how fre-

quently step outcomes should be verified and validated. Experts in

other process domains similarly use other weakly justified guidelines.

These guidelines, and common knowledge should be justified, or

replaced, by careful studies that provide clear, carefully reasoned

justifications for specific approaches and practices. It is particu-

larly important to provide justifications for practices relating to the

http://dx.doi.org/10.1016/j.jss.2015.08.043

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.08.043
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.08.043&domain=pdf
mailto:chenjie@itechs.iscas.ac.cn
mailto:Xiwei.Xu@nicta.com.au
mailto:ljo@cs.umass.edu
mailto:Liming.Zhu@nicta.com.au
mailto:brun@cs.umass.edu
mailto:Len.Bass@nicta.com.au
mailto:xiaojunchao@itechs.iscas.ac.cn
mailto:mingshu@itechs.iscas.ac.cn
mailto:wq@itechs.iscas.ac.cn
http://dx.doi.org/10.1016/j.jss.2015.08.043


206 J. Chen et al. / The Journal of Systems and Software 110 (2015) 205–221

detection and correction of errors in complex processes. This pa-

per presents one approach for providing justifications to such guide-

lines and knowledge. This approach uses error-seeding and discrete-

event simulation to evaluate the effectiveness of error-detection and

correction strategies. We illustrate and evaluate our approach using

real-world error-prone processes employed in the domain of cloud

computing.

Cloud computing processes (such as those related to the deploy-

ment, upgrade, failover, and reconfiguration of cloud-based appli-

cations) are particularly appropriate as evaluation vehicles because

they are complex and error-prone. These processes are often orches-

trations of intricate interactions among cloud infrastructure entities,

application software, tools, and human activities. This complexity

and the reliance on humans to make key decisions in time-critical

situations make these processes particularly error-prone. Moreover,

pressures for evolution of the underlying applications, and the emer-

gence of continuous deployment practices are resulting in the need to

exercise these processes as frequently as tens of times a day. The chal-

lenges of orchestrating these interactions at such high frequency and

under uncertainties that are inherent to cloud environments can be

considerable, increasing still further the propensity of such processes

to error (Zhu et al., 2015). Errors can necessitate additional operations

such as time-consuming troubleshooting, undoing steps, and prob-

lem fixing and redoing the undone steps. These operations can be

expensive and error-prone themselves. To deal with this propensity

for errors, these processes typically incorporate strategies for detect-

ing, diagnosing, recovering from, and preventing errors. But the per-

formance characteristics of these strategies can be subtle and hard

to fully understand. For example, automated error detection and tol-

erance may reduce error rates and detect errors earlier but can also

mask accumulative subtle errors leading to major outages and mak-

ing error diagnosis more difficult. And fully automated overreaction

to an initial small error is often the cause of major failures (Yuan

et al., 2014). Humans, on the other hand, may spot errors that com-

puters may miss, but are often slow, which can impede system

progress. Therefore strategies for synthesizing these two approaches

should be considered carefully as they yield trade-offs between ef-

ficiency and reliability. Choosing the wrong strategy may result in

wasted resources or errors that propagate unnoticed. There is a need

for research on approaches for effectively deciding on appropriate

and effective strategies.

These challenges become particularly acute when dealing with

large-scale applications that run in distributed cloud environments.

The execution platform for a modern large-scale cloud-based system

might consist of thousands of nodes, and the maintenance of such a

system may require dozens of changes (e.g., the incorporation of new

versions of software utilities) a day (Etsy, 2013), each of which may

require the execution of a complex process of collaboration between

automated tools and a busy operations team. As a consequence, er-

rors are frequent. According to Gartner, “Through 2015, 80% of out-

ages impacting mission-critical services will be caused by people and

process issues” (Colville et al., 2010). Some errors arise from faulty

system executions, which then trigger operator reactions, such as ex-

ecuting a complex remediation process that itself might be flawed.

Errors of this kind, and their cascading effects, may have a significant

impact on overall operational costs.

The deployment of cloud-based applications relies on the smooth

performance of such key processes as preparing the environment,

loading pre-baked virtual machine images into the environment, ap-

plying and propagating the necessary configurations, activating and

deactivating the new and old versions, conducting small-scale ca-

nary testing, and rolling execution images out to perhaps thousands

of nodes. All of these processes are complex, error-prone collabora-

tions between human operators and automated systems. They are

difficult to test using traditional testing approaches, despite attempts

to treat them like regular applications by the Infrastructure-as-Code

movement. It is important that errors be identified and handled

within minutes or seconds, especially in the case of high-speed, high-

capacity systems in domains such as finance, healthcare, and trans-

portation, all critical components of key societal infrastructure. Al-

though humans and automated tools collaborate in performing these

processes and in dealing with errors, strategies for this collaboration

are presently only guessed at.

We address these challenges by creating a general framework for

evaluating error-detection and correction strategies, and then apply-

ing the framework to the domain of cloud computing. Specifically we

• created a framework to integrate approaches for error detection and

repair into complex processes. These approaches have characteristics

that are demonstrably superior to current best practices, which are

often simply weakly justified guidelines based on anecdotal observa-

tion and experience.

And then, we

• used this framework for sample complex cloud-computing processes,

which, unlike the (presumably) well-tested software systems whose

deployment they manage, are neither well understood nor well

tested.

In this paper, we model some example deployment operations as

processes, each consisting of a collection of steps. Each step is ex-

ecuted by an agent, who is either an automated script, an assistive

tool, or a human. Each step requires different amounts of time and

various resources, such as computing power, a readied environment,

or cloud computing nodes. We focus on two complex and representa-

tive processes, deployment and rolling upgrade, to illustrate our ap-

proach. We augment an existing process modeling language to de-

fine these error-prone processes, and use it to model precisely when

errors can occur, the types and distributions of those errors, and the

processes involved in checking for and correcting these errors. Recog-

nizing that the error-checking and correcting processes themselves

can both miss some errors and themselves actually create other er-

rors, our framework supports modeling these situations as well.

We use a process-aware discrete-event simulator to show the

overall effects that strategies can have on the final outcomes of pro-

cess execution, and to suggest improvements to the processes. We

carry out our simulations within a framework that incorporates de-

tailed and precise models of these processes, populated with em-

pirical data and measures obtained by observing real-world process

executions. Our simulations are designed to represent realistic error-

detection and repair scenarios that take place in the real world, and

to support accurate comparisons of different approaches for dealing

with these scenarios. For example, we use our framework to answer

questions such as “How frequently should an error-checking action be

performed, and at what level of granularity?” and “How much does

increasing error-checking frequency reduce the risk of system fail-

ure?” Our view is that answers to such questions lead to cost-benefit

trade-off analysis that could help developers and operators select

policies that positively affect system operational costs and product

quality.

Finally, we validate our framework and approach by comparing

the models and results obtained from simulation studies to observed

measurements of multiple large-scale executions of the processes in

real cloud computing settings on the Amazon Web Service (AWS)1

platform. Our results demonstrate that the simulations make reason-

able predictions that can help actual operations personnel to conduct

what-if analyses to support making better decisions. This, in turn,

supports our view of the effectiveness of our overall framework and

approach.

The rest of the paper is structured as follows. Section 2 intro-

duces our modeling approach and Section 3 describes our simulation

1 http://aws.amazon.com/.

http://aws.amazon.com/


Download	English	Version:

https://daneshyari.com/en/article/6885573

Download	Persian	Version:

https://daneshyari.com/article/6885573

Daneshyari.com

https://daneshyari.com/en/article/6885573
https://daneshyari.com/article/6885573
https://daneshyari.com/

