
The Journal of Systems and Software 110 (2015) 239–252

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A programming-level approach for elasticizing parallel scientific

applications

Guilherme Galante a, Luis Carlos Erpen De Bona b

a Computer Science Department, Western Parana State University (UNIOESTE), Cascavel, PR, Brazil
b Informatics Department, Federal University of Parana (UFPR), Curitiba, PR, Brazil

a r t i c l e i n f o

Article history:

Received 8 May 2015

Revised 24 August 2015

Accepted 27 August 2015

Available online 8 September 2015

Keywords:

Cloud computing

Elasticity

Parallel applications

a b s t r a c t

Elasticity is considered one of the fundamental properties of cloud computing. Several mechanisms to provide

the feature are offered by public cloud providers and in some academic works. We argue these solutions are

inefficient in providing elasticity for scientific applications, since they cannot consider the internal structure

and behavior of applications. In this paper we present an approach for exploring the elasticity in scientific

applications, in which the elasticity control is embedded in application source code and constructed using

elasticity primitives. This approach enables the application itself to request or to release its own resources,

taking into account the execution flow and runtime requirements. To support the construction of elastic

applications using the presented approach, we developed the Cloudine framework. Cloudine provides all

components necessary to construct and execute elastic scientific applications. The Cloudine effectiveness is

demonstrated in the experiments where the platform is successfully used to include new features to existing

applications, to extend functionalities of other elasticity frameworks and to add elasticity support to parallel

programming libraries.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Elasticity is considered one of the fundamental properties of the

cloud (Han et al., 2014). It can be defined as the ability to adaptively

scale resources up and down in order to meet varying application de-

mands. It implies that the resources that compose the virtual envi-

ronment may be added or removed on-the-fly and without service

interruptions. Ideally, for the consumer, the capabilities available for

provisioning often appear to be unlimited and can be purchased in

any quantity at any time (Badger et al., 2011). This feature is suitable

for dynamic applications, whose resources requirements cannot be

determined exactly in advance, either due to changes in runtime re-

quirements or in application structure (Jha et al., 2011).

Considering the importance of elasticity, several mechanisms to

provide this feature are offered by public cloud providers, such as,

Amazon EC2,1 GoGrid2 and Rackspace,3 and by several academic

works (Galante and Bona, 2012). These mechanisms were originally

developed for dynamic scaling server-based applications, such as

web, e-mail and database servers, to handle unpredictable workloads,

and enabling organizations to avoid the downfalls involved with non-

E-mail address: guilherme.galante@unioeste.br (G. Galante).
1 http://aws.amazon.com/. Last Access: Mar. 2015.
2 http://www.gogrid.com/. Last Access: Mar. 2015.
3 http://www.rackspace.com/. Last Access: Mar. 2015.

elastic provisioning (over and under-provisioning) (Chieu et al., 2009;

Armbrust et al., 2010).

Most of current elasticity mechanisms are based in the monitoring

of the external requests or in resources usage (processor load, mem-

ory usage, I/O requests) which can vary widely over time (Vaquero

et al., 2011). The monitoring data are employed by an elasticity con-

troller that makes decisions on whether the resources must be scaled

or not, taking into account a set of conditions that when satisfied trig-

gers some actions over the underlying cloud.

Although these mechanisms are used successfully in dynamic

resources provisioning for server-based applications, we argue that

these solutions may be inefficient in providing elasticity for scientific

applications (Wang et al., 2012; Galante and Bona, 2013). First:

Scientific application workloads are not defined by external requests,

disabling the use of monitoring of external requests. Second: mon-

itoring systems generally collect information from VM, neglecting

the behavior and structure of the application that runs in the VM.

Third: the consumption of resource in scientific applications is dif-

ferent from that presented in server-based applications. The former

tends to consume all resources assigned, independently from the

amount provided and the latter consumes the resources according to

workload variation.

Moreover, we must take into account that there are several ap-

plications models (e.g., serial, multithread, single program multiple

data, master-worker, MapReduce, etc.), each one with its own im-

http://dx.doi.org/10.1016/j.jss.2015.08.051

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.08.051
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.08.051&domain=pdf
mailto:guilherme.galante@unioeste.br
http://aws.amazon.com/
http://www.gogrid.com/
http://www.rackspace.com/
http://dx.doi.org/10.1016/j.jss.2015.08.051


240 G. Galante, L.C. Erpen De Bona / The Journal of Systems and Software 110 (2015) 239–252

Fig. 1. Elasticity mechanisms classification.

plementation details and execution behavior particularities. Thus,

to estimate accurately the applications demands, it would be neces-

sary a specialized controller for each class of application. Trying to

address this issue, a couple of academic researches have developed

solutions to enable the development of elastic scientific applications

in specific models, e.g., workflows (Byun et al., 2011), MapReduce

(Chohan et al., 2010; Iordache et al., 2012), Message Passing Interface

(MPI) (Raveendran et al., 2011) and master–slave applications (Rajan

et al., 2011).

In this paper, we present an approach for enabling the develop-

ment of elastic parallel scientific applications in several models and

independent from monitoring systems and user interaction. In our

proposal, the elasticity control is embedded in application source

code and the elasticity actions (allocation and deallocation of re-

sources) are performed by application itself, relying on its internal

structure and behavior. The development of the embedded elasticity

control is based in the concept of elasticity primitives, which are func-

tions that provide support for representing and reflecting dynamic

demand and translating it into dynamic requests of resources.

Using the elasticity primitives it is possible to construct new elas-

tic applications as well as to elastify existing applications without

having to rebuild them using cloud frameworks. The elastic applica-

tions are able to adjust their own resources according to runtime re-

quirements or due to changes in execution flow (e.g., different solvers

with different processing demands). It also enables the construction

or adaptation of parallel processing libraries and APIs for transpar-

ently support elasticity.

To support the construction of elastic applications using the pre-

sented approach, we developed Cloudine, a framework for building

and execution of elastic applications in IaaS clouds. Our framework

provides a platform, that controls the resources provisioning and an

application-programming interface (API), which provides the elastic-

ity primitives set. The Cloudine effectiveness is demonstrated in the

experiments where the platform is successfully used to include new

features to existing (or legacy) applications, to extend functionalities

of other elasticity frameworks and to add elasticity support to well-

known parallel programming libraries.

The remainder of the paper is organized as follows. Section 2

presents the state-of-art related to cloud elasticity. After analyzing

the current elasticity solutions, Section 3 points out some research

opportunities in the area. In Section 4 we present the programming

level elasticity approach. Section 5 introduces the Cloudine frame-

work and presents its architecture and operation. Section 6 shows

some experiments. Finally, Section 7 concludes the paper.

2. Cloud elasticity: state-of-art

Elasticity is defined as the ability of a system to dynamically add

or remove computational resources used by an application or user

to match the current demand as closely as possible (Herbst et al.,

2013). Resources can include everything from single virtual proces-

sors (VCPU) to a complete virtual cluster. The concept could also be

extended to applications. An elastic application is able to adapt itself

to handle changes in resources or to request or release resources ac-

cording to demands. To be able to take advantage of elasticity, it is

necessary that both architecture and application support the feature

in some form.

Recently, several elasticity solutions have been developed by pub-

lic providers and by academy. In this section we present a classifi-

cation of existing solutions and establish the state-of-the art of elas-

ticity in computational clouds. This classification was created after

analyzing 6 public clouds infrastructures, 3 private cloud platforms

and 28 elasticity mechanisms, and later, extracting their main char-

acteristics. Fig. 1 present the proposed classification.

At the first level, the solutions are separated into two groups: (1)

elastic architectures and (2) elasticity support mechanisms. In the first

group we analyze the support offered by the elasticity of the cloud

infrastructure and in the second group we consider the character-

istics of the mechanisms used to provide elasticity to applications

that run on IaaS (Infrastructure-as-a-Service) and PaaS (Platform-as-

a-Service) clouds.

2.1. Elastic infrastructures

The cloud computing model emerged as an attractive alternative

to the acquisition and management of infrastructure resources, al-

lowing users requesting, using and releasing resources with a flexi-

bility not found in other computational models.

The elasticity provided by clouds infrastructures are inherent to

the use of virtualization techniques and to the availability of a large

amount of physical resources. However, the manner it is provided to

the user varies for each cloud platform according to how resources

are offered and which elasticity type is supported.

Resources can be provided in two different modes: fixed or config-

urable. In fixed mode, virtual machines (VMs) are offered with a pre-

defined configuration of CPU, memory and I/O (called instance types

by Amazon and server sizes in GoGrid and Rackspace). The problem

in providing resources in such way occurs when users cannot map

their specific demands into one of the configurations offered by the

provider. In configurable mode users can customize VM resources ac-

cording to their needs. Although this model is the more appropriate

to the cloud concept, the configurable mode is available in few cloud

provides, such as Profitbricks4 and CloudSigma.5

Depending on how the cloud implements the provisioning of re-

sources we can classify its elasticity as horizontal or vertical (Vaquero

et al., 2011). In the horizontal approach, the number of instances

(VMs) is increased or decreased. On the other hand, the vertical

4 https://www.profitbricks.com/. Last Access: Mar. 2015.
5 http://www.cloudsigma.com/. Last Access: Mar. 2015.

https://www.profitbricks.com/
http://www.cloudsigma.com/


Download English Version:

https://daneshyari.com/en/article/6885576

Download Persian Version:

https://daneshyari.com/article/6885576

Daneshyari.com

https://daneshyari.com/en/article/6885576
https://daneshyari.com/article/6885576
https://daneshyari.com

