
The Journal of Systems and Software 105 (2015) 91–106

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Input-based adaptive randomized test case prioritization: A local beam

search approach✩

Bo Jiang a, W.K. Chan b,∗

a School of Computer Science and Engineering, Beihang University, Beijing, China
b Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong

a r t i c l e i n f o

Article history:

Received 19 January 2014

Revised 1 March 2015

Accepted 22 March 2015

Available online 30 March 2015

Keywords:

Regression testing

Adaptive test case prioritization

Randomized algorithm

a b s t r a c t

Test case prioritization assigns the execution priorities of the test cases in a given test suite. Many existing

test case prioritization techniques assume the full-fledged availability of code coverage data, fault history,

or test specification, which are seldom well-maintained in real-world software development projects. This

paper proposes a novel family of input-based local-beam-search adaptive-randomized techniques. They make

adaptive tree-based randomized explorations with a randomized candidate test set strategy to even out the

search space explorations among the branches of the exploration trees constructed by the test inputs in the

test suite. We report a validation experiment on a suite of four medium-size benchmarks. The results show

that our techniques achieve either higher APFD values than or the same mean APFD values as the existing

code-coverage-based greedy or search-based prioritization techniques, including Genetic, Greedy and ART,

in both our controlled experiment and case study. Our techniques are also significantly more efficient than

the Genetic and Greedy, but are less efficient than ART.

© 2015 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Regression testing (Yoo and Harman, 2012) is a widely-practiced

activity in real-world software development projects (Onoma

et al., 1998), in which a better testing infrastructure has a potential

to recover the economic loss resulting from software failures by

one third (Tassey, 2002). During a session of a regression test, a

changed program P is executed over a regression test suite T. Many

companies executed the whole test suite to ensure the quality of

their software (Onoma et al., 1998). Moreover, each nightly build of

many open-source software projects such as MySQL (MySQL, 2013)

and FireFox (FireFox, 2013) always apply the whole test suite to verify

the version built.

If the time spent to complete the execution of a program over an

individual test case is non-trivial, the time cost to execute the whole

test suite T may be large (Jiang et al., 2011). For instance, profiling

an execution trace of a C/C++ program at the memory access level

using a pintool may easily incur tens to one hundred fold of slowdown

✩ This research is supported in part by the Early Career Scheme of Research Grants

Council of Hong Kong SAR (project nos. 111313 and 11201114), the National Natural

Science Foundation of China (project no. 61202077).
∗ Corresponding author. Tel.: +852 3442 9684.

E-mail addresses: jiangbo@buaa.edu.cn (B. Jiang), wkchan@cityu.edu.hk

(W.K. Chan).

(Luk et al., 2005). On the other hand, programmers may want to know

the test results as early as possible at low cost.

Test case prioritization (Elbaum et al., 2002; Wong et al., 1997) is

a safe aspect of regression testing. In essence, test case prioritization

reorders the test cases in a test suite T and does not discard any

test case in T for execution toward a chosen testing goal (denoted

by G).

A vast majority of existing test case prioritization research studies

(Yoo and Harman, 2012) propose to collect data from the executions

of a previous version (denoted by Q) of P over a test suite Told to

guide the prioritization on T. For ease of presentation, we denote the

set of program execution traces of Q over Told by Q(Told) and that of

P over T by P(T).

Numerous types of such data (such as the fault history (Kim and

Porter, 2002), the change history (Elbaum et al., 2004), and the execu-

tion profiles (Elbaum et al., 2002)) obtained from these executions of

Q have been empirically evaluated in diverse contexts with respect to

the differences in their effects on regression testing results towards

the selected goal G of regression testing techniques. For instance, a

vast majority of empirical studies on test case prioritization validate

on how quickly the permutations of T generated by such test case pri-

oritization techniques detect faults in P by assuming that T = Told. A

recent trend is to replace the rate of fault detection by the rate of pro-

gram element coverage (Li et al., 2007) or to incorporate the results

of change impact analysis (Li et al., 2013) in their problem or solution

http://dx.doi.org/10.1016/j.jss.2015.03.066

0164-1212/© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.jss.2015.03.066
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.03.066&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.13039/501100001809
mailto:jiangbo@buaa.edu.cn
mailto:wkchan@cityu.edu.hk
http://dx.doi.org/10.1016/j.jss.2015.03.066
http://creativecommons.org/licenses/by-nc-nd/4.0/

92 B. Jiang, W.K. Chan / The Journal of Systems and Software 105 (2015) 91–106

formulations. Still, the essential assumption of inferring T based on

Told remains unchanged.

In this paper, we propose a new family of novel input-based ran-

domized local beam search (LBS) techniques for test case prioritiza-

tion. This family of techniques targets to be applied in the general

(more practical) scenario, where T may be different from Told and Q

may be different from P without taking any approximation (i.e., not

assuming either T inferable from Told or Q and P similar). Because

both Told and Q are irrelevant to this family of techniques, these LBS

techniques can be applied in both regression testing and functional

testing. In this way, practitioners need not care about whether a test-

ing technique is applicable to functional testing scenarios only or to

regression testing scenarios only, or both.

Given a test suite T, each LBS technique starts with a set of k partial

solutions, each being a sequence of single test case taken from T. For

each partial solution S, it randomly selects a number of test cases

from T \ S to construct a candidate set C and evaluates each extended

partial solution S^{t}, where t � C, according to a chosen distance

measure. It marks the overall best k extended partial and randomized

solutions as the current set X of partial solutions. It then goes into

the next iteration to extend each partial solution in the current set

X in the same manner until all test cases in T have been included in

each partial solution X. It addresses the search space exploration cost

problem by controlling the number of branches in the exploration tree

in each round to a small number. Suppose that at each round, both the

size of the candidate set and the number of branches to be explored

by an LBS technique are k, and the number of distance comparisons

between test cases in each node of the tree being explored is capped

to be m, and then there are at most mk2|T| comparisons.

We have validated our LBS techniques on four medium-sized UNIX

utility programs in a controlled experiment setting to evaluate their

overall performance. We have further performed a case study on the

comparison of our LBS search algorithm to the algorithms of Greedy

(Elbaum et al., 2002), ART (Jiang et al., 2009), and Genetic (Li et al.,

2007) by encoding test cases using input information and using the

even-spread of test cases as the guidance heuristic to determine

whether the performance of our techniques is merely attributed to

the LBS algorithm. In both validations, we measured their effective-

ness in terms of the average rate of fault detection (i.e., APFD (Elbaum

et al., 2002)) and the time spent in generating a resultant prioritized

test suite.

The empirical results from both the controlled experiment and the

case study show that LBS achieves either higher mean APFD values

than or similar mean APFD values as Greedy, ART, and GA. LBS also is

significantly more efficient than GA but less efficient than ART at the

5% significance level. The result further shows that the effectiveness

of LBS is not much affected by different parameter values needed to

initialize the LBS algorithm. In the case study, we have the following

observations: (1) the effectiveness of the studied LBS techniques was

mainly contributed by our LBS algorithm, and (2) the use of input

information for test case encoding and our heuristic also contributed

to the significant reduction of the test case prioritization cost.

This work significantly extends its preliminary version (Jiang and

Chan, 2013): (1) It generalizes the family of LBS techniques by pre-

senting five more new techniques and evaluates the family against

more existing techniques for benchmarking. (2) It reports a new

experiment that investigates the impact of candidate set size and

beam width on the effectiveness of the family. (3) It presents a

new case study on comparing this family with several adapted clas-

sical search-based test case prioritization algorithms (Greedy, ART,

and Genetic).

The main contribution of the paper together with its preliminary

version (Jiang and Chan, 2013) is twofold. (1) This paper is the first

work that presents a family of novel input-based randomized test

case prioritization techniques. (2) It presents the first series of exper-

iments to validate input-based search-based test case prioritization

techniques.

We organize the rest of paper as follows: we review the prelim-

inaries of this work in Section 2. Then, we describe our family of LBS

techniques with their design rationales in Section 3. After that, we

present validation experiments in Section 4 and Section 5. Section 6

discusses other issues relevant to our LBS techniques. Finally, we

present the related work followed by the conclusion of the paper in

Section 7 and Section 8, respectively.

2. Preliminaries

2.1. Problem formulation

Elbaum et al. (2002) described the test case prioritization problem

as follows:

Given: T, a test suite; PT, the set of permutations of T; g, a goal

function from PT to real numbers.

Problem: To find T′ � PT such that �T′′ � PT, g(T′) � g(T′′).
In this problem formulation, PT represents a set of all possible

prioritizations (orderings) of T and g is a goal function that calculates

an award value for that ordering.

For a test suite containing N test cases, the size |PT| is N!, which

is intractable if N is large. In practice, the set PT in the universal

quantification under the above problem formation is replaced by an

enumerated subset of PT.

Moreover, a goal g, such as the rate of code coverage (Li et al.,

2007), can be measurable before the execution of P over the prioritized

test suite T′. Such a goal can be used by a search-based optimization

technique for test case prioritization.

There are however other types of goals, such as the rate of fault

detection (Elbaum et al., 2002), which cannot be measured directly

before the execution of the test cases. A recent attempt is to use a

heuristic (e.g., code coverage, even spreading of test cases) to make

an approximation. Our techniques try to spread the test cases in T as

evenly as possible within the input domain in each iteration using a

randomized local beam search approach.

2.2. Critical review on assumptions of test case prioritization techniques

In this section, we revisit the assumptions made in the typical test

case prioritization research work.

In general, T may be different from Told and P may be different

from Q. The dataset or execution profile of Q(Told) is also unlikely to

be the same as these of Q(T), P(Told), or P(T). Moreover, if either a test

case reduction/selection technique (Do et al., 2008; Yoo and Harman,

2012) or an impact analysis technique (Li et al., 2013) has been applied

on Told to construct a proper subset Told ’ of Told and the test cases in

Told\Told ’ have not been executed by Q, we have Q(Told ’) � Q(Told). In

this connection, if a test case prioritization technique relies on Q(Told ’)

in prioritizing test cases in T, it is a threat.

We further categorize our observations on the limitations due to

such assumptions into five classes:

First, assuming the historic data of Told always available is restric-

tive. For instances, the execution profile data are seldom maintained

in the repositories of real-world software development projects such

as MySQL (MySQL, 2013), Eclipse (Eclipse, 2013), and FireFox (FireFox,

2013). In many projects, such as numerous Android applications (e.g.,

Foursquared (Foursquared, 2012)) available in Google Code (Google

Code, 2013), their bug repositories only keep few bug reports.

One way to alleviate this problem is to run T on an older version

Q. However, the correctness criteria (e.g., the assertion statements in

JUnit test cases) may require manual determination. Both the execu-

tions of the test cases and the determination of their correctness lead

to non-trivial overheads.

Collecting code coverage data requires profiling program execu-

tions, which may be impractical in some industrial environments.

For instance, in safety-critical software like avionics control (where

enumerators cannot support the execution of the whole test suite),

Download English Version:

https://daneshyari.com/en/article/6885615

Download Persian Version:

https://daneshyari.com/article/6885615

Daneshyari.com

https://daneshyari.com/en/article/6885615
https://daneshyari.com/article/6885615
https://daneshyari.com

