
The Journal of Systems and Software 105 (2015) 107–124

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Design and programming patterns for implementing usability

functionalities in web applications

Francy D. Rodríguez a,∗, Silvia T. Acuña b, Natalia Juristo a

a Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid, Campus de Montegancedo s/n, 28660 Boadilla del Monte, Madrid, Spain
b Departamento de Ingeniería Informática, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 11, 28049 Madrid, Spain

a r t i c l e i n f o

Article history:

Received 31 July 2014

Revised 31 March 2015

Accepted 2 April 2015

Available online 11 April 2015

Keywords:

Software engineering

Design patterns

Programming patterns

a b s t r a c t

Usability is a software system quality attribute. There are usability issues that have an impact not only on

the user interface but also on the core functionality of applications. In this paper, three web applications

were developed to discover patterns for implementing two usability functionalities with an impact on core

functionality: Abort Operation and Progress Feedback. We applied an inductive process in order to identify

reusable elements to implement the selected functionalities. For communication purposes, these elements

are specified as design and programming patterns (PHP, VB.NET and Java). Another two web applications

were developed in order to evaluate the patterns. The evaluation explores several issues such as ease of

pattern understanding and ease of pattern use, as well as the final result of the applications.

We found that it is feasible to reuse the identified solutions specified as patterns. The results also show

that usability functionalities have features, like the level of coupling with the application or the complex-

ity of each component of the solution, that simplify or complicate their implementation. In this case, the

Abort Operation functionality turned out to be more feasible to implement than the Progress Feedback

functionality.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Usability is a critical software system quality attribute in highly

interactive systems (Juristo et al., 2007a). Usability is defined in ISO

Standard 9241-210 (ISO, 2010) as “the extent to which a system, prod-

uct or service can be used by specified users to achieve specified goals

with effectiveness, efficiency and satisfaction in a specified context

of use”. SE originally considered that a satisfactory level of usability

could be achieved by including usability features in the design of the

user interface (UI). In this scheme of things, it was sufficient to use

strategies that separated the UI from the core functionality of the

applications.

It was later established that the separation strategy is not good

enough to output a usable system, and there are usability issues

that should be tackled as of the early development process activi-

ties (Juristo et al., 2007a) because they affect the core functionality of

the applications. A usability issue with impact on the software sys-

tem core that is not taken into account early on in the development

process will generate high costs, and the new system is unlikely to

implement all its features (John et al., 2009).

∗ Corresponding author. Tel.: +34693367642.

E-mail addresses: fd.rodriguez@alumnos.upm.es, netfrancy@hotmail.com

(F.D. Rodríguez), silvia.acunna@uam.es (S.T. Acuña), natalia@fi.upm.es (N. Juristo).

The literature abounds with studies that deal with usability in

early development process activities and present high-level solutions.

Some of the proposals for including usability in software development

are introduced as guidelines or patterns. For example, Juristo et al.

(2007b) propose guidelines for eliciting requirements and Bass et al.

(2001) and Folmer et al. (2003) introduce architectural patterns for in-

cluding usability functionalities such as aggregating commands, can-

celling commands, predicting task duration and verifying resources.

Other approaches tackle activities later on in the development pro-

cess. Thus, Juristo et al. (2007a) analyze the impact of usability issues

on detailed design, and Folmer et al. (2006) present final implemen-

tations as an example to help establish the implications of usability

for system architecture.

This research is a continuation of the effort to address usability is-

sues that affect software system functionality within the SE develop-

ment process. The difference is that it targets the later activities of the

development process not normally addressed in the literature. We set

out to establish whether it is possible to find reusable detailed design

and programming solutions in order to build applications that imple-

ment usability functionalities. In this study we also analyze whether

the identified reusable solutions can be specified as design patterns

and programming patterns (D&P patterns). Finally, independent de-

velopers use the proposed solutions to implement systems for the

purposes of evaluation.

http://dx.doi.org/10.1016/j.jss.2015.04.023

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.04.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.04.023&domain=pdf
mailto:fd.rodriguez@alumnos.upm.es
mailto:netfrancy@hotmail.com
mailto:silvia.acunna@uam.es
mailto:natalia@fi.upm.es
http://dx.doi.org/10.1016/j.jss.2015.04.023

108 F.D. Rodríguez et al. / The Journal of Systems and Software 105 (2015) 107–124

We selected two usability functionalities called usability mech-

anisms (UM), which have a major impact on design (Juristo et al.,

2007a): Abort Operation (AO) and Progress Feedback (PF). These two

functionalities cannot be implemented focusing on the UI only. The

study is limited to web applications. Web applications differ from

other application types in that the client side is composed of dynamic

web pages which are interpreted by a browser and generate particu-

lar reuse conditions. A web page can be created on the server side or

client side depending on the programming type or technologies used

(W3C, 2014).

The object-oriented design and programming paradigm and three

different server-side languages are used: PHP, VB.NET and Java.

Object-oriented programming encourages reuse (Szyperski, 2002),

and, as all three development projects use the same type of elements,

we can look for the elements that they have in common. Although

PHP was not originally an object-oriented language, its latest ver-

sions provide for the design and use of classes and methods. The web

client side uses the Javascript language.

This paper was structured as follows. Section 2 presents the back-

ground and work related to our proposal. Section 3 describes the

research method applied in order to both identify and evaluate the

reusable elements. Section 4 shows the reusable elements discovered

by the research and their specification as patterns for the AO and PF

UMs. Section 5 describes how the proposed patterns were evaluated.

Section 6 discusses the results and their evaluation. Section 7 presents

the conclusions and future work.

2. Background

2.1. Usability mechanisms

The field of human–computer interaction (HCI) has addressed sys-

tem usability at length. HCI guidelines are useful for achieving a satis-

factory level of system usability. HCI researchers have defined a great

many patterns bearing different names: interaction or interaction

design patterns (Tidwell, 2010; Welie and Trætteberg, 2000), user

interface patterns (Laakso, 2003), usability patterns (Brighton, 1999;

Perzel and Kane, 1999), and web design patterns (Van Duyne et al.,

2006). All these patterns have in common that they offer solutions to

specific usability problems, although they are described or grouped

differently. There are also several pattern libraries for user interface

design built by companies and available on the web (Yahoo, 2013;

Pattern Factory Oy, 2014; Infragistics, 2015; Toxboe, 2015).

Based on HCI recommendations about how to improve software

systems usability, Juristo et al. (2007a) identified three categories of

recommendations depending on their effect on software develop-

ment: usability recommendations with an impact on the UI, usability

recommendations with an impact on the development process and

usability recommendations with an impact on design. They reported

empirical evidence of the relationship between usability and software

design, identified functional usability features (FUF) with a high im-

pact on design and measured their impact on real-world applications.

The identified functionalities are a product of the HCI recommen-

dations. In turn, each HCI author identifies different FUF subtypes.

Each subtype has been referred to as UM and has a name indicating

its functionality. A non-exhaustive list of FUFs and their respective

mechanisms is presented in Juristo et al. (2007b). Table 1 shows the

identified usability features and their respective mechanisms.

The use of the term usability functionality is potentially contro-

versial, as usability is typically construed as being a non-functional

requirement. However, Juristo et al. (2007b) established that the fea-

tures listed in Table 1 “represent particular functionalities that can

be built into a software system to increase usability. Since functional

requirements describe the functions that the software is to execute,

we consider that the usability features in Table 1 should be treated

as functional requirements (even though they are usability-related

requirements). Such functional usability requirements need to be ex-

plicitly specified, just like any other functionality”. Previous research

by Bosch and Juristo (2003) and Bass et al. (2004) had already demon-

strated the relationship between usability and software system func-

tionalities.

In this paper, we propose D&P patterns to implement two of the

UMs listed in Table 1. There are another two papers based on the

usability functionalities and mechanisms described in Table 1. The

aim of both papers is to add usability functionalities to software sys-

tems, but they take completely different approaches. One of the ap-

proaches (Carvajal et al., 2013) proposes guidelines for developers

to incorporate FUFs into each development process activity from the

requirements elicitation to the design stages. The second approach

(Panach et al., 2014) is an extension of Juristo et al.’s research for

model-driven development (MDD). Their aim is to build usability

functionalities into software products developed using MDD.

We selected two UMs: Abort Operation, part of the Undo/Cancel

FUF, and Progress Feedback, part of the Feedback FUF. Both UMs are

highlighted in gray in Table 1. The other mechanisms belonging to

these two FUFs are Global Undo, Object-Specific Undo and Go Back

Table 1

Usability mechanisms with an impact on software design.

Usability feature Usability mechanism Goal

Feedback System status To inform users about the internal status of systems.

Interaction To inform users that the systems has registered a user interaction, i.e.

that the system has heard the user.

Warning To inform users of any action with important consequences.

Progress feedback To inform users that the system is processing an action that will take

some time to complete.

Undo/Cancel Global undo To undo system actions at several levels.

Object-specific undo To undo several actions on an object.

Abort operation To cancel the execution of an action or the whole application.

Go back To go back to a particular state in a command execution sequence.

User input error prevention/correction Structured text entry To help prevent the user from making data input errors.

Wizard Step-by-step execution To help users to do task that require different steps with user input and

correct such input.

User profile Preferences To record each user’s options for using system functions.

Personal object space To record each user’s options for using the system interface.

Favourites To record certain places of interest for the user.

Help Multilevel help To provide different help levels for different users.

Command aggregation Command aggregation To express possible actions to be taken with the software through

commands that can be built from smaller parts.

Download	English	Version:

https://daneshyari.com/en/article/6885616

Download	Persian	Version:

https://daneshyari.com/article/6885616

Daneshyari.com

https://daneshyari.com/en/article/6885616
https://daneshyari.com/article/6885616
https://daneshyari.com/

