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a  b  s  t  r  a  c  t

The  generation  of  unit-level  test  cases  for  structural  code  coverage  is a task  well-suited  to  Genetic  Algo-
rithms.  Method  call  sequences  must  be  created  that  construct  objects,  put  them  into  the  right  state  and
then execute  uncovered  code.  However,  the  generation  of  primitive  values,  such  as  integers  and  doubles,
characters  that appear  in  strings,  and  arrays  of primitive  values,  are  not  so  straightforward.  Often,  small
local  changes  are required  to  drive  the  value  toward  the  one  needed  to  execute  some  target  structure.
However,  global  searches  like Genetic  Algorithms  tend  to make  larger changes  that  are  not  concentrated
on  any  particular  aspect  of  a  test  case.  In this  paper,  we extend  the  Genetic  Algorithm  behind  the EvoSuite
test  generation  tool  into  a Memetic  Algorithm,  by equipping  it with  several  local  search  operators.  These
operators  are  designed  to efficiently  optimize  primitive  values  and other  aspects  of  a  test  suite  that  allow
the search  for test  cases  to function  more  effectively.  We  evaluate  our  operators  using  a rigorous  exper-
imental  methodology  on  over  12,000  Java  classes,  comprising  open  source  classes  of  various  different
kinds,  including  numerical  applications  and  text  processors.  Our  study  shows  that  increases  in  branch
coverage  of  up  to 53%  are  possible  for  an  individual  class  in  practice.

© 2014  The  Authors.  Published  by  Elsevier  Inc. This  is  an open  access  article  under  the  CC  BY  license
(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Search-based testing uses optimization techniques such as
Genetic Algorithms to generate test cases. Traditionally, the tech-
nique has been applied to test inputs for procedural programs, such
as those written in C (McMinn, 2004). More recently, the tech-
nique has been applied to the generation of unit test cases for
object-oriented software (Fraser and Arcuri, 2013b). The problem
of generating such test cases is much more complicated than for
procedural code. To generate tests that cover all of the branches in a
class, for example, the class must be instantiated, and a method call
sequence may  need to be generated to put the object into a certain
state. These method calls may  themselves require further objects
as parameters, or primitive values such as integers and doubles, or
strings, or arrays of values. The EvoSuite tool (Fraser and Arcuri,
2011) uses Genetic Algorithms to generate a whole test suite, com-
posed of a number of test cases. Although empirical experiments
have shown that it is practically usable on a wide range of programs
(Fraser and Arcuri, 2012), Genetic Algorithms are a global search
technique, which tend to induce macro-changes on the test suite. In
order to cover certain branches, more focused changes are required.
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If, for example, somewhere in the test suite there is a particular inte-
ger variable, the probability of it being mutated during the search
with a Genetic Algorithm is low, and so the optimization toward
particular branches dependent on this value will take a long time.
The difficulty of this problem becomes even more apparent when
one takes into account string variables. Consider the example test
case in Fig. 1: transformations of the string-based branching state-
ment (see Section 3.3) provide guidance to the search for an input to
reach the true-branch. However, even under very strong simplifica-
tions, a “basic” Genetic Algorithm would need an average of at least
768, 000 costly fitness evaluations (i.e., test executions) to cover the
target branch. If the budget is limited, then the approach may  fail to
cover such goals. To overcome this problem, we extend the Genetic
Algorithm used in the whole test suite generation approach to a
Memetic Algorithm: at regular intervals, the search inspects the
primitive variables and tries to apply local search to improve them.
Although these extensions are intuitively useful and tempting, they
add additional parameters to the already large parameter space.
In fact, misusing these techniques can even lead to worse results,
and so we  conducted a detailed study to find the best parameter
settings. In detail, the contributions of this paper are:

1 Memetic Algorithm for test suite optimization: We  present a novel
approach to integrate local search on test cases and primitive
values in a global search for test suites.
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Fig. 1. Example class and test case: in theory, four edits of s can lead to the target branch being covered. However, with a Genetic Algorithm where each statement of the
test  is mutated with a certain probability (e.g., 1/3 when there are three statements) one would have to be really lucky: if the test is part of a test suite (size 10) of a Genetic
Algorithm (population 50) and we only assume a character range of 128, then even if we  ignore all the complexities of Genetic Algorithms, we would still need on average
at  least 50 × 4 ×1/((1/10) × (1/3) × (1/128)) = 768, 000 fitness evaluations before covering the target branch.

2 Local search for complex values:  We  extend the notion of local
search as commonly performed on numerical inputs to string
inputs, arrays, and objects.

3 Test suite improvement: We  define operators on test suites that
allow test suites to improve themselves during phases of Lamar-
ckian learning.

4  Sensitivity analysis: We  have implemented the approach as an
extension to the EvoSuite tool (Fraser and Arcuri, 2013b), and
analyze the effects of the different parameters involved in the
local search, and determine the best configuration.

5 Empirical evaluation:  We  evaluate our approach in detail on a
set of 16 open source classes as well as two large benchmarks
(comprising more than 12,000 classes), and compare the results
to the standard search-based approach that does not include local
search.

This paper is an extension of Fraser et al. (2013), and it is organized
as follows: Section 2 presents relevant background to search-based
testing, and the different types of search that may  be applied,
including local search and search using Genetic and Memetic Algo-
rithms. Section 3 discusses the global search and fitness function
applied to optimize test suites for classes toward high code cover-
age with EvoSuite. Section 4 discusses how to extend this approach
with local operators designed to optimize primitive values such as
integers and floating point values, strings and arrays. Section 5 then
presents our experiments and discusses our findings, showing how
our local search operators, incorporated into a Memetic Algorithm,
result in higher code coverage. A discussion on the threats to valid-
ity of this study follows in Section 6. Finally, Section 7 concludes the
paper.

2. Search-based test case generation

Search-based testing applies meta-heuristic search techniques
to the task of test case generation (McMinn, 2004). In this section,
we briefly review local and global search approaches to testing, and
the combination of the two in the form of Memetic Algorithms.

2.1. Local search algorithms

With local search algorithms (Arcuri, 2009) one only considers
the neighborhood of a candidate solution. For example, a hill climb-
ing search is usually started with a random solution, of which all
neighbors are evaluated with respect to their fitness for the search
objective. The search then continues on either the first neighbor
that has improved the fitness, or the best neighbor, and again con-
siders its neighborhood. The search can easily get stuck in local
optima, which are typically overcome by restarting the search with
new random values, or with some other form of escape mechanism
(e.g., by accepting a worse solution temporarily, as with simu-
lated annealing). Different types of local search algorithms exist,
including simulated annealing, tabu search, iterated local search

and variable neighborhood search (see Gendreau and Potvin, 2010,
for example, for further details). A popular version of local search
often used in test data generation is Korel’s Alternating Variable
Method (Korel, 1990; Ferguson and Korel, 1996). The Alternating
Variable Method (AVM) is a local search technique similar to hill
climbing, and was  introduced by Korel (1990). The AVM considers
each input variable of an optimization function in isolation, and
tries to optimize it locally. Initially, variables are set to random val-
ues. Then, the AVM starts with “exploratory moves” on the first
variable. For example, in the case of an integer an exploratory move
consists of adding a delta of +1 or −1. If the exploratory move was
successful (i.e., the fitness improved), then the search accelerates
movement in the direction of improvement with so-called “pattern
moves”. For example, in the case of an integer, the search would
next try +2, then +4, etc. Once the next step of the pattern search
does not improve the fitness any further, the search goes back to
exploratory moves on this variable. If successful, pattern search is
again applied in the direction of the exploratory move. Once no
further improvement of the variable value is possible, the search
moves on to the next variable. If no variable can be improved the
search restarts at another randomly chosen location to overcome
local optima.

2.2. Global search algorithms

In contrast to local search algorithms, global search algorithms
try to overcome local optima in order to find more globally opti-
mal  solutions. Harman and McMinn (2010) recently determined
that global search is more effective than local search, but less effi-
cient, as it is more costly. With evolutionary testing,  one of the most
commonly applied global search algorithms is a Genetic Algorithm
(GA). A GA tries to imitate the natural processes of evolution: an ini-
tial population of usually randomly produced candidate solutions
is evolved using search operators that resemble natural processes.
Selection of parents for reproduction is based on their fitness (sur-
vival of the fittest). Reproduction is performed using crossover
and mutation with certain probabilities. With each iteration of the
GA, the fitness of the population improves until either an opti-
mal  solution has been found, or some other stopping condition has
been met  (e.g., a maximum time limit or a certain number of fit-
ness evaluations). In evolutionary testing, the population would
for example consist of test cases, and the fitness estimates how
close a candidate solution is to satisfying a coverage goal. The ini-
tial population is usually generated randomly, i.e., a fixed number
of random input values is generated. The operators used in the
evolution of this initial population depend on the chosen represen-
tation. A fitness function guides the search in choosing individuals
for reproduction, gradually improving the fitness values with each
generation until a solution is found. For example, to generate tests
for specific branches—to achieve branch coverage of a program—a
common fitness function (McMinn, 2004) integrates the approach
level (number of unsatisfied control dependencies) and the branch
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