
Please cite this article in press as: Fraser, G., et al., A Memetic Algorithm for whole test suite generation. J. Syst. Software (2014),
http://dx.doi.org/10.1016/j.jss.2014.05.032

ARTICLE IN PRESSG Model
JSS-9334; No. of Pages 17

The Journal of Systems and Software xxx (2014) xxx–xxx

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

A Memetic Algorithm for whole test suite generation

Gordon Frasera,∗, Andrea Arcurib, Phil McMinna

a University of Sheffield, Department of Computer Science, 211 Regent Court, Portobello S1 4DP, Sheffield, United Kingdom
b Certus Software V&V Center, Simula Research Laboratory, P.O. Box 134, 1325 Lysaker, Norway

a r t i c l e i n f o

Article history:
Received 1 December 2013
Received in revised form 17 April 2014
Accepted 9 May 2014
Available online xxx

Keywords:
Search-based software engineering
Object-oriented
Evolutionary testing

a b s t r a c t

The generation of unit-level test cases for structural code coverage is a task well-suited to Genetic Algo-
rithms. Method call sequences must be created that construct objects, put them into the right state and
then execute uncovered code. However, the generation of primitive values, such as integers and doubles,
characters that appear in strings, and arrays of primitive values, are not so straightforward. Often, small
local changes are required to drive the value toward the one needed to execute some target structure.
However, global searches like Genetic Algorithms tend to make larger changes that are not concentrated
on any particular aspect of a test case. In this paper, we extend the Genetic Algorithm behind the EvoSuite
test generation tool into a Memetic Algorithm, by equipping it with several local search operators. These
operators are designed to efficiently optimize primitive values and other aspects of a test suite that allow
the search for test cases to function more effectively. We evaluate our operators using a rigorous exper-
imental methodology on over 12,000 Java classes, comprising open source classes of various different
kinds, including numerical applications and text processors. Our study shows that increases in branch
coverage of up to 53% are possible for an individual class in practice.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Search-based testing uses optimization techniques such as
Genetic Algorithms to generate test cases. Traditionally, the tech-
nique has been applied to test inputs for procedural programs, such
as those written in C (McMinn, 2004). More recently, the tech-
nique has been applied to the generation of unit test cases for
object-oriented software (Fraser and Arcuri, 2013b). The problem
of generating such test cases is much more complicated than for
procedural code. To generate tests that cover all of the branches in a
class, for example, the class must be instantiated, and a method call
sequence may need to be generated to put the object into a certain
state. These method calls may themselves require further objects
as parameters, or primitive values such as integers and doubles, or
strings, or arrays of values. The EvoSuite tool (Fraser and Arcuri,
2011) uses Genetic Algorithms to generate a whole test suite, com-
posed of a number of test cases. Although empirical experiments
have shown that it is practically usable on a wide range of programs
(Fraser and Arcuri, 2012), Genetic Algorithms are a global search
technique, which tend to induce macro-changes on the test suite. In
order to cover certain branches, more focused changes are required.

∗ Corresponding author. Tel.: +44 114 22 21844
E-mail addresses: gordon.fraser@sheffield.ac.uk (G. Fraser), arcuri@simula.no

(A. Arcuri), p.mcminn@sheffield.ac.uk (P. McMinn).

If, for example, somewhere in the test suite there is a particular inte-
ger variable, the probability of it being mutated during the search
with a Genetic Algorithm is low, and so the optimization toward
particular branches dependent on this value will take a long time.
The difficulty of this problem becomes even more apparent when
one takes into account string variables. Consider the example test
case in Fig. 1: transformations of the string-based branching state-
ment (see Section 3.3) provide guidance to the search for an input to
reach the true-branch. However, even under very strong simplifica-
tions, a “basic” Genetic Algorithm would need an average of at least
768, 000 costly fitness evaluations (i.e., test executions) to cover the
target branch. If the budget is limited, then the approach may fail to
cover such goals. To overcome this problem, we extend the Genetic
Algorithm used in the whole test suite generation approach to a
Memetic Algorithm: at regular intervals, the search inspects the
primitive variables and tries to apply local search to improve them.
Although these extensions are intuitively useful and tempting, they
add additional parameters to the already large parameter space.
In fact, misusing these techniques can even lead to worse results,
and so we conducted a detailed study to find the best parameter
settings. In detail, the contributions of this paper are:

1 Memetic Algorithm for test suite optimization: We present a novel
approach to integrate local search on test cases and primitive
values in a global search for test suites.

http://dx.doi.org/10.1016/j.jss.2014.05.032
0164-1212/© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

dx.doi.org/10.1016/j.jss.2014.05.032
dx.doi.org/10.1016/j.jss.2014.05.032
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://creativecommons.org/licenses/by/3.0/
mailto:gordon.fraser@sheffield.ac.uk
mailto:arcuri@simula.no
mailto:p.mcminn@sheffield.ac.uk
dx.doi.org/10.1016/j.jss.2014.05.032
http://creativecommons.org/licenses/by/3.0/

Please cite this article in press as: Fraser, G., et al., A Memetic Algorithm for whole test suite generation. J. Syst. Software (2014),
http://dx.doi.org/10.1016/j.jss.2014.05.032

ARTICLE IN PRESSG Model
JSS-9334; No. of Pages 17

2 G. Fraser et al. / The Journal of Systems and Software xxx (2014) xxx–xxx

Fig. 1. Example class and test case: in theory, four edits of s can lead to the target branch being covered. However, with a Genetic Algorithm where each statement of the
test is mutated with a certain probability (e.g., 1/3 when there are three statements) one would have to be really lucky: if the test is part of a test suite (size 10) of a Genetic
Algorithm (population 50) and we only assume a character range of 128, then even if we ignore all the complexities of Genetic Algorithms, we would still need on average
at least 50 × 4 ×1/((1/10) × (1/3) × (1/128)) = 768, 000 fitness evaluations before covering the target branch.

2 Local search for complex values: We extend the notion of local
search as commonly performed on numerical inputs to string
inputs, arrays, and objects.

3 Test suite improvement: We define operators on test suites that
allow test suites to improve themselves during phases of Lamar-
ckian learning.

4 Sensitivity analysis: We have implemented the approach as an
extension to the EvoSuite tool (Fraser and Arcuri, 2013b), and
analyze the effects of the different parameters involved in the
local search, and determine the best configuration.

5 Empirical evaluation: We evaluate our approach in detail on a
set of 16 open source classes as well as two large benchmarks
(comprising more than 12,000 classes), and compare the results
to the standard search-based approach that does not include local
search.

This paper is an extension of Fraser et al. (2013), and it is organized
as follows: Section 2 presents relevant background to search-based
testing, and the different types of search that may be applied,
including local search and search using Genetic and Memetic Algo-
rithms. Section 3 discusses the global search and fitness function
applied to optimize test suites for classes toward high code cover-
age with EvoSuite. Section 4 discusses how to extend this approach
with local operators designed to optimize primitive values such as
integers and floating point values, strings and arrays. Section 5 then
presents our experiments and discusses our findings, showing how
our local search operators, incorporated into a Memetic Algorithm,
result in higher code coverage. A discussion on the threats to valid-
ity of this study follows in Section 6. Finally, Section 7 concludes the
paper.

2. Search-based test case generation

Search-based testing applies meta-heuristic search techniques
to the task of test case generation (McMinn, 2004). In this section,
we briefly review local and global search approaches to testing, and
the combination of the two in the form of Memetic Algorithms.

2.1. Local search algorithms

With local search algorithms (Arcuri, 2009) one only considers
the neighborhood of a candidate solution. For example, a hill climb-
ing search is usually started with a random solution, of which all
neighbors are evaluated with respect to their fitness for the search
objective. The search then continues on either the first neighbor
that has improved the fitness, or the best neighbor, and again con-
siders its neighborhood. The search can easily get stuck in local
optima, which are typically overcome by restarting the search with
new random values, or with some other form of escape mechanism
(e.g., by accepting a worse solution temporarily, as with simu-
lated annealing). Different types of local search algorithms exist,
including simulated annealing, tabu search, iterated local search

and variable neighborhood search (see Gendreau and Potvin, 2010,
for example, for further details). A popular version of local search
often used in test data generation is Korel’s Alternating Variable
Method (Korel, 1990; Ferguson and Korel, 1996). The Alternating
Variable Method (AVM) is a local search technique similar to hill
climbing, and was introduced by Korel (1990). The AVM considers
each input variable of an optimization function in isolation, and
tries to optimize it locally. Initially, variables are set to random val-
ues. Then, the AVM starts with “exploratory moves” on the first
variable. For example, in the case of an integer an exploratory move
consists of adding a delta of +1 or −1. If the exploratory move was
successful (i.e., the fitness improved), then the search accelerates
movement in the direction of improvement with so-called “pattern
moves”. For example, in the case of an integer, the search would
next try +2, then +4, etc. Once the next step of the pattern search
does not improve the fitness any further, the search goes back to
exploratory moves on this variable. If successful, pattern search is
again applied in the direction of the exploratory move. Once no
further improvement of the variable value is possible, the search
moves on to the next variable. If no variable can be improved the
search restarts at another randomly chosen location to overcome
local optima.

2.2. Global search algorithms

In contrast to local search algorithms, global search algorithms
try to overcome local optima in order to find more globally opti-
mal solutions. Harman and McMinn (2010) recently determined
that global search is more effective than local search, but less effi-
cient, as it is more costly. With evolutionary testing, one of the most
commonly applied global search algorithms is a Genetic Algorithm
(GA). A GA tries to imitate the natural processes of evolution: an ini-
tial population of usually randomly produced candidate solutions
is evolved using search operators that resemble natural processes.
Selection of parents for reproduction is based on their fitness (sur-
vival of the fittest). Reproduction is performed using crossover
and mutation with certain probabilities. With each iteration of the
GA, the fitness of the population improves until either an opti-
mal solution has been found, or some other stopping condition has
been met (e.g., a maximum time limit or a certain number of fit-
ness evaluations). In evolutionary testing, the population would
for example consist of test cases, and the fitness estimates how
close a candidate solution is to satisfying a coverage goal. The ini-
tial population is usually generated randomly, i.e., a fixed number
of random input values is generated. The operators used in the
evolution of this initial population depend on the chosen represen-
tation. A fitness function guides the search in choosing individuals
for reproduction, gradually improving the fitness values with each
generation until a solution is found. For example, to generate tests
for specific branches—to achieve branch coverage of a program—a
common fitness function (McMinn, 2004) integrates the approach
level (number of unsatisfied control dependencies) and the branch

dx.doi.org/10.1016/j.jss.2014.05.032

Download English Version:

https://daneshyari.com/en/article/6885623

Download Persian Version:

https://daneshyari.com/article/6885623

Daneshyari.com

https://daneshyari.com/en/article/6885623
https://daneshyari.com/article/6885623
https://daneshyari.com

