
Please cite this article in press as: Lopez-Herrejon, R.E., et al., An assessment of search-based techniques for reverse engineering feature
models. J. Syst. Software (2014), http://dx.doi.org/10.1016/j.jss.2014.10.037

ARTICLE IN PRESSG Model
JSS-9404; No. of Pages 17

The Journal of Systems and Software xxx (2014) xxx–xxx

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

An assessment of search-based techniques for reverse engineering
feature models

Roberto E. Lopez-Herrejona,∗, Lukas Linsbauera, José A. Galindob, José A. Parejob,
David Benavidesb, Sergio Segurab, Alexander Egyeda

a Institute for Software Systems Engineering, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
b Department of Computer Languages and Systems, University of Seville, Av Reina Mercedes S/N, 41012 Seville, Spain

a r t i c l e i n f o

Article history:
Received 28 November 2013
Received in revised form 10 July 2014
Accepted 14 October 2014
Available online xxx

Keywords:
Feature model
Reverse engineering
Search Based Software Engineering

a b s t r a c t

Successful software evolves from a single system by adding and changing functionality to keep up with
users’ demands and to cater to their similar and different requirements. Nowadays it is a common practice
to offer a system in many variants such as community, professional, or academic editions. Each variant
provides different functionality described in terms of features. Software Product Line Engineering (SPLE)
is an effective software development paradigm for this scenario. At the core of SPLE is variability modelling
whose goal is to represent the combinations of features that distinguish the system variants using feature
models, the de facto standard for such task. As SPLE practices are becoming more pervasive, reverse
engineering feature models from the feature descriptions of each individual variant has become an active
research subject. In this paper we evaluated, for this reverse engineering task, three standard search based
techniques (evolutionary algorithms, hill climbing, and random search) with two objective functions on
74 SPLs. We compared their performance using precision and recall, and found a clear trade-off between
these two metrics which we further reified into a third objective function based on Fˇ , an information
retrieval measure, that showed a clear performance improvement. We believe that this work sheds light
on the great potential of search-based techniques for SPLE tasks.

© 2014 Published by Elsevier Inc.

1. Introduction

Successful software evolves not only to adapt to emerging
development technologies but also to meet the clients’ and users’
functionality demands. For instance, it is not uncommon to find aca-
demic, professional, or community variants (a.k.a editions) of com-
mercial and open source applications where each variant provides
different features increments in programme functionality (Zave).

The most common scenario in practice starts with a first
system variant from which a new independent development
branch is forked when a new variant with different feature com-
binations is required. This process is repeated as many times
as new variants, also with different feature combinations, are
requested. Unfortunately, this approach does not scale well as

∗ Corresponding author. Tel.: +43 732 2468 4380.
E-mail addresses: roberto.lopez@jku.at (R.E. Lopez-Herrejon),

lukas.linsbauer@jku.at (L. Linsbauer), jagalindo@us.es (J.A. Galindo), japarejo@us.es
(J.A. Parejo), benavides@us.es (D. Benavides), sergiosegura@us.es (S. Segura),
alexander.egyed@jku.at (A. Egyed).

the number of features and their combinations increases even
slightly (Krueger, 2001). Software Product Line Engineering (SPLE)
is a software development paradigm devised to cope with the
problems entailed by this scenario. SPLE advocates a disciplined
yet flexible approach to maximize reuse and customization in
all the software artefacts used throughout the entire develop-
ment cycle (Krueger, 2001; Czarnecki and Eisenecker, 2000; Pohl
et al., 2005; van d. Linden et al., 2007). The driving goal of
SPLE is to create software product lines (SPLs) that realize the
different software system variants in an effective and efficient man-
ner.

However, developing SPLs from existing and individually
developed system variants is not an easy endeavour. A crucial
requirement is capturing all the feature combinations present in
SPLs and represent them with feature models (FMs) (Czarnecki and
Eisenecker, 2000; Kang et al., 1990), a de facto standard for mod-
elling variability – the capacity of software artefacts to change
(Svahnberg et al., 2005). Previous research has addressed this
reverse engineering challenge from different perspectives with dif-
ferent approaches such as configuration scripts (She et al., 2011),
propositional logic expressions (Czarnecki and Wasowski, 2007),

http://dx.doi.org/10.1016/j.jss.2014.10.037
0164-1212/© 2014 Published by Elsevier Inc.

dx.doi.org/10.1016/j.jss.2014.10.037
dx.doi.org/10.1016/j.jss.2014.10.037
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:roberto.lopez@jku.at
mailto:lukas.linsbauer@jku.at
mailto:jagalindo@us.es
mailto:japarejo@us.es
mailto:benavides@us.es
mailto:sergiosegura@us.es
mailto:alexander.egyed@jku.at
dx.doi.org/10.1016/j.jss.2014.10.037

Please cite this article in press as: Lopez-Herrejon, R.E., et al., An assessment of search-based techniques for reverse engineering feature
models. J. Syst. Software (2014), http://dx.doi.org/10.1016/j.jss.2014.10.037

ARTICLE IN PRESSG Model
JSS-9404; No. of Pages 17

2 R.E. Lopez-Herrejon et al. / The Journal of Systems and Software xxx (2014) xxx–xxx

natural language (Weston et al., 2009), and ad hoc algorithms
(Haslinger et al., 2011, 2013; Acher et al., 2012).

Our previous exploratory study analysed evolutionary algo-
rithms for this reverse engineering task (Lopez-Herrejon et al.,
2012). In this paper, we extend that work by:

• Including 15 new case studies of different domains.
• Employing two more search techniques, steepest ascent hill

climbing and random search (Luke, 2009).
• Considering two new objective functions.
• Defining objective functions in terms of standard feature model

operations.
• Extending the state representation with additional feature order-

ing information.
• Adding new mutation and crossover operators.
• Comparing and contrasting the objective functions using stan-

dard information retrieval metrics, recall and precision (Manning
et al., 2008).

• Performing a detailed statistical analysis along the lines sug-
gested by Arcuri and Briand (2014).

Our evaluation revealed a clear trade-off between recall and
precision in our two objective functions. We further analysed this
trade-off and reified it into an objective function that showed a
clear improvement. We believe that this work is a stepping stone
towards leveraging the wealth of Search-Based Software Engineer-
ing techniques for this and other SPLE challenges.

The structure of the paper is as follows. Section 2 provides the
basic background on feature models and presents our running
example. Section 3 describes the representation used to encode fea-
ture models. Section 4 presents the three search-based techniques
under assessment and how they were adapted to our problem.
Section 5 describes the objective functions analysed in our study
and the definitions of recall and precision metrics for our reverse
engineering task. Section 6 presents a short overview of our imple-
mentation. Section 7 describes how the evaluation was carried
out to compare and contrast the three algorithms with our two
objective functions, analyses the results obtained highlighting the
trade-off we found between precision and recall, and defines and
evaluates the third objective function that reifies this trade-off. Sec-
tion 8 describes the threats to validity identified in our work and
how they were addressed. Section 9 summarizes the related work
closest to ours. Section 10 highlights some open issues for future
work, and Section 11 summarizes our conclusions.

2. Running example and feature models

As a running example let us consider a hypothetical set of vari-
ants of a software system for controlling Video On Demand (VOD)
services for home and personal entertainment. In this example,
there are 18 different variants depicted in Table 1. For each vari-
ant the set of features that are selected are depicted with tick
marks

√
. For sake of brevity, we employ abbreviations in the fea-

ture header labels. All the systems have a common functionality
(e.g. turning on/off) and can play shows. These two features are
respectively denoted as VOD and Play in the table. Do notice that
both are selected in all the system variants. Similarly all systems
have displaying capability, denoted by feature Display, and have
an operating system (feature OS) with its kernel (feature Ker). Some
systems have: recording capability (feature Rec), can be used either
in a TV set (feature TV) or in a mobile device (feature Mob) which
can be standard phone sets (feature Std) or smart phone sets (fea-
ture Sm), advanced operating systems capability (feature Adv), areal
antenna (feature Aer), cable TV capability (feature Cab), and pay-
per-view (feature PPV).

Our reverse engineering process starts from the set of variants
and their provided features, as captured in a table like Table 1, and
has as goal obtaining a feature model that represents such feature
combinations. Recall that feature models are the de facto standard
to model relations among the features and thus the common and
variable features of an SPL (Kang et al., 1990). In feature models,
features are depicted as labelled boxes and are connected with lines
to other features with which they relate, collectively forming a tree-
like structure. A feature can be classified as:

• Mandatory feature. A mandatory feature is selected in a system
whenever its parent feature is also selected. It is depicted with a
filled circle at the child end of the feature relation. For example,
Fig. 1a illustrates mandatory feature B.

• Optional feature. An optional feature may or may not be part of
a programme whenever its parent feature is part. It is depicted
with an empty circle at the child end of the feature relation. Fig. 1b
is an example of an optional feature B.

Features can also be grouped into:

• Alternative groups. If the parent feature of the group is selected,
exactly one feature from the group must be selected. Alternative
groups are depicted with lines connecting the parent feature with
the group features and an empty arc crossing the lines. For exam-
ple, Fig. 1c illustrates that if feature P is selected, then one of the
group features C1, C2 or C3 must be selected.

• Or groups. If the parent feature of the group is selected, then one
or more features from the group can be selected. Or groups are
depicted with lines connecting the parent feature and the group
features plus a filled arc crossing the lines. Fig. 1d shows that if
feature P is selected, one of more of features C1, C2 or C3 must
be selected. For instance, the combination of C1 with C2, or the
combination that has all three group features C1, C2 and C3.

Besides the parent–child relations, features can also relate
across different branches of the feature model with cross-tree con-
straints (CTCs) (Benavides et al., 2010). The typical examples of this
kind of relations are: (i) requires relation whereby if a feature A is
selected a feature B must also be selected, and (ii) excludes rela-
tion whereby if a feature A is selected then feature B must not be
selected and vice versa. In a feature model, these latter relations are
depicted with doted single-arrow lines and dotted double-arrow
lines respectively. Fig. 1e illustrates these kinds of CTCs. Addition-
ally, more general cross-tree constraints can be expressed using
propositional logic (Benavides et al., 2010).

The reverse engineering process of our work is summarized in
Fig. 2, which shows as input the system variants with their selected
features. By using search-based techniques, our goal is to obtain a
feature model that captures the feature combinations of the sys-
tem variants. It should be pointed out that feature models are
non-canonical representations, meaning that in general a set of
feature combinations could be represented by more than one differ-
ent feature model. Thus trade-offs between different solutions can
be found. In addition, the commonly large number of features and
number of variants makes it a problem suitable for search-based
techniques.

We should remark that reverse engineering a SPL from a set
of system variants is indeed an iterative process whereby all the
involved stakeholders go through multiple iterations where the
feature models, SPL architecture and supporting platform are suc-
cessively refined. The goal of our work is to provide a first working
feature model which can subsequently be refined through this iter-
ative process mentioned.

As an example target of our reverse engineering process let us
consider a feature model for our running example shown in Fig. 3.

dx.doi.org/10.1016/j.jss.2014.10.037

Download English Version:

https://daneshyari.com/en/article/6885629

Download Persian Version:

https://daneshyari.com/article/6885629

Daneshyari.com

https://daneshyari.com/en/article/6885629
https://daneshyari.com/article/6885629
https://daneshyari.com

