
The Journal of Systems and Software 103 (2015) 412–422

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Investigating the effect of “defect co-fix” on quality assurance resource

allocation: A search-based approach

Hadi Hemmati a,∗, Meiyappan Nagappan b, Ahmed E. Hassan c

a Department of Computer Science, University of Manitoba, Canada
b Department of Software Engineering, Rochester Institute of Technology, USA
c School of Computing, Queen’s University, Canada

a r t i c l e i n f o

Article history:

Received 2 December 2013

Revised 25 October 2014

Accepted 15 November 2014

Available online 9 December 2014

Keywords:

Defect prediction

Co-fix

Search-based prioritization

a b s t r a c t

Allocation of resources to pre-release quality assurance (QA) tasks, such as source code analysis, peer review,

and testing, is one of the challenges faced by a software project manager. The goal is to find as many defects

as possible with the available QA resources prior to the release. This can be achieved by assigning more

resources to the more defect-prone artifacts, e.g., components, classes, and methods. The state-of-the-art

QA resource allocation approaches predict the defect-proneness of an artifact using the historical data of

different software metrics, e.g., the number of previous defects and the changes in the artifact. Given a QA

budget, an allocation technique selects the most defect-prone artifacts, for further investigation by the QA

team. While there has been many research efforts on discovering more predictive software metrics and more

effective defect prediction algorithms, the cost-effectiveness of the QA resource allocation approaches has

always been evaluated by counting the number of defects per selected artifact. The problem with such an

evaluation approach is that it ignores the fact that, in practice, fixing a software issue is not bounded to an

artifact under investigation. In other words, one may start reviewing a file that is identified as defect-prone

and detect a defect, but to fix the defect one may modify not only the defective part of the file under review,

but also several other artifacts that are somehow related to the defective code (e.g., a method that calls

the defective code). Such co-fixes (fixing several defects together) during analyzing/reviewing/testing of an

artifact under investigation will change the number of remaining defects in the other artifacts. Therefore, a

QA resource allocation approach is more effective if it prioritizes the artifacts that would lead to the smallest

number of remaining defects.

Investigating six medium-to-large releases of open source systems (Mylyn, Eclipse, and NetBeans, two

releases each), we found that co-fixes happen quite often in software projects (30–42% of the fixes modify more

than one artifact). Therefore, in this paper, we first introduce a new cost-effectiveness measure to evaluate

QA resource allocation, based on the concept of “remaining defects” per file. We then propose several co-

fix-aware prioritization approaches to dynamically optimize the new measure, based on the historical defect

co-fixes. The evaluation of these approaches on the six releases shows that (a) co-fix-aware QA prioritization

approaches improve the traditional defect prediction-based ones, in terms of density of remaining defects

per file and (b) co-fix-aware QA prioritization can potentially benefit from search-based software engineering

techniques.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Typical pre-release software quality assurance (QA) activities

involve tasks such as code inspection, peer review, and testing of

software artifacts. The goal of these QA activities is detecting and

∗ Corresponding author. Tel.: +1 2044749254.

E-mail addresses: hemmati@cs.umanitoba.ca (H. Hemmati), mei@se.rit.edu

(M. Nagappan), ahmed@cs.queensu.ca (A.E. Hassan).

fixing defects before they are perceived as failures by the users.

Allocating pre-release QA resources to the QA tasks, is one of the criti-

cal duties of a software project manager. Resources are always limited

and managers need to prioritize their resources and fix as many de-

fects as possible, within a limited time, before release. Some bugs are

already identified by the development team, while unit/integration

testing. So if there is any known unfixed bugs in the system, they will

get priority to be fixed (by fault localization and debugging). How-

ever, many other bugs may slip through the initial testing. The goal

of the QA team, at this stage, is ensuring that the existing QA budget

http://dx.doi.org/10.1016/j.jss.2014.11.040

0164-1212/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2014.11.040
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.11.040&domain=pdf
mailto:hemmati@cs.umanitoba.ca
mailto:mei@se.rit.edu
mailto:ahmed@cs.queensu.ca
http://dx.doi.org/10.1016/j.jss.2014.11.040


H. Hemmati et al. / The Journal of Systems and Software 103 (2015) 412–422 413

is wisely spent, even if there is no reported bug yet. Therefore, the

QA team, usually estimates riskiness of each artifact (e.g., classes) and

prioritize the artifact for further QA investigations (which mostly is a

combination of inspection and testing before each release).

One of the current practices for estimating riskiness, which is well

studied in the literature, is using defect prediction approaches (Fenton

and Neil, 1999; Hall et al., 2011). Such approaches usually estimate

the number of defects per artifact1 (e.g., components, classes, and

methods). These estimates are then used, to prioritize the allocation

of resources to the most defect-prone artifacts. In this paper, we call

this process, QA prioritization.

To improve QA prioritization, several prediction techniques and

many product/process/social metrics have been studied on many soft-

ware systems (Fenton and Neil, 1999; Hall et al., 2011). A QA prioriti-

zation is typically evaluated by its effectiveness in terms of properly

assigning resources to the artifacts that contain more defects. A typical

effectiveness measure for evaluating a QA prioritization approach is

the number of defects per file. Assume we are prioritizing source code

files of a system for further QA investigation. Assume the top three

most defective files (A, B, and C) contain (20, 15, and 10) defects, re-

spectively. The most effective QA prioritization approach would rank

the files as A, B, and then C (i.e., from most to least number of defects).

This ranking assures that with any budget between one to three files

to investigate, the QA task hits the areas of the code with the most

number of defects.

Assume that the investigation of A’s defects results in modifying

some other files due to code dependency of the defects. In other

words, while fixing the defects of A, several defects of other files

are also fixed. We call this phenomenon, a co-fix. Now consider a

scenario where 10 of B’s defects are already fixed by the time that we

are done fixing A’s defects and none of the C’s defects are touched.

The traditional effectiveness measure (the original number of defects

per file) still insists that B is the next best choice for QA allocation.

However, B only contains five remaining defects, whereas C still has

10 untouched defects.

In this paper, we first argue that the current effectiveness measure,

based on the number of defects per file, is not the best evaluation

mechanism for QA prioritization, due to the co-fixes. We then study

six medium-to-large releases of open source systems (Mylyn, Eclipse,

and NetBeans; two releases each), and realize that there are several

cases of co-fix in these releases (30–42% of the fixes modify more

than one file2). To consider the co-fix effect on the defect-proneness

of artifacts, in this paper, we first introduce a new cost-effectiveness

measure for QA prioritization, density of remaining defects (DRD), per

artifact (per file, in our case). We use density rather than absolute

number of defects, since it better captures the cost involved in detect-

ing/repairing of the defects per artifact (Arisholm and Briand, 2006;

Kamei et al., 2010; Mende and Koschke, 2009, 2010; Shihab et al.,

2013). However, the novelty of DRD is in introducing the concept of

remaining defects vs. all defects, as the effectiveness measure.

To optimize the new cost-effectiveness measure for QA prioritiza-

tion (DRD), we propose a novel approach for ranking files, which dy-

namically updates the ranks, based on the current remaining defects

per file (co-fix-aware approach). We then compare two variations of

a traditional QA prioritization approach: TradNum (sorting files based

on their number of predicted defects) (Marcus et al., 2008; Neuhaus

et al., 2007; Shihab et al., 2010; Zimmermann and Nagappan, 2008)

and TradDens (sorting files based on their density of predicted defects)

(Arisholm and Briand, 2006; Kamei et al., 2010; Mende and Koschke,

2009, 2010; Shihab et al., 2013) with two different variations of our

co-fix-aware approach CoFixNum (a co-fix-aware ranking based on the

1 Granularity of the artifacts depends on many factors such as the availability of

historical data, the cost of QA per artifact, and the QA policies in place in the project.
2 Since all these systems are in Java, each main class is usually a separate file. So the

granularity of artifacts in our analysis can be considered as file or class level.

number of predicted defects) and CoFixDens (a co-fix-aware ranking

based on the density of predicted defects).

To empirically evaluate the performance of our proposed ap-

proaches, we study, in particular, the following research question:

Research Question: Can we improve the cost-effectiveness

of traditional QA prioritization, using a co-fix-aware ap-

proach?

Applying the four approaches (TradNum, TradDens, CoFixNum, and

CoFixDens) on the releases of the open source systems, we show that

CoFixDens is significantly more effective than the alternatives in rank-

ing files with higher DRDs, in most of our case studies. We also show

the feasibility of search algorithms on this research domain, by in-

vestigating the applicability of a simple hill climbing local search

algorithm for QA resource prioritization and comparing it with the

CoFixDens approach. Therefore, the contributions of this paper can be

summarized as:

1. Introducing the concept of remaining defects as the basis for mea-

suring the effectiveness of QA resource prioritization.

2. Introducing the concept of co-fix-awareness to dynamically rank

source code files.

3. Proposing two co-fix-aware ranking algorithms (CoFixNum, and

CoFixDens).

4. Empirically comparing several QA resource prioritization

algorithms.

5. Investigating the applicability of heuristic-based search

algorithms on QA resource prioritization.

2. The effect of co-fix on QA prioritization: motivating example

Fig. 1 is an example from the browsing package in Eclipse

version 3.0. As it is shown, an issue/bug, with an id of 63036,

was fixed by repairing three defective files (PackagesViewHier-

archalContentProvider.java, PackagesViewFlatContentProvider.java,

and JavaBrowsingPart.java). This is an example of co-fix, where sev-

eral source code defects in different files are repaired together during

one single fix commit. Co-fixes may have several reasons. One reason

is that several defects are logically related to a single issue, i.e., fix-

ing the issue requires fixing all the related defects. A co-fix may also

happen due to code dependencies. For example, two defects in two

methods of two distinct classes need to be fixed together, since one

method is calling the other. Regardless of the cause, one may study

the defect co-fix distribution among artifacts (source code files in this

paper) and its effect on the QA prioritization.

As an example of co-fix distribution, let us look at four fixes that

affect three files from the Netbeans project as follows:

Fig. 1. An example of Fix–Defect relationship from Eclipse version 3.0 browsing pack-

age. For the sake of simplicity, for each file, only the defects related to the fix is shown.



Download	English	Version:

https://daneshyari.com/en/article/6885633

Download	Persian	Version:

https://daneshyari.com/article/6885633

Daneshyari.com

https://daneshyari.com/en/article/6885633
https://daneshyari.com/article/6885633
https://daneshyari.com/

