
The Journal of Systems and Software 103 (2015) 440–451

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

The influence of search components and problem characteristics in early

life cycle class modelling

Jim Smith∗, Chris Simons

Department of Computer Science and Creative Technologies, University of the West of England, Bristol BS16 1QY , UK

a r t i c l e i n f o

Article history:

Received 1 December 2013

Revised 23 October 2014

Accepted 15 November 2014

Available online 29 November 2014

Keywords:

Search-based software engineering

Class modelling

Meta-heuristics

a b s t r a c t

This paper examines the factors affecting the quality of solution found by meta-heuristic search when op-

timising object-oriented software class models. From the algorithmic perspective, we examine the effect

of encoding, choice of components such as the global search heuristic, and various means of incorporating

problem- and instance-specific information. We also consider the effect of problem characteristics on the

(estimated) cost of the global optimum, and the quality and distribution of local optima.

The choice of global search component appears important, and adding problem and instance-specific

information is generally beneficial to an evolutionary algorithm but detrimental to ant colony optimisation.

The effect of problem characteristics is more complex. Neither scale nor complexity have a significant effect

on the global optimum as estimated by the best solution ever found. However, using local search to locate

100,000 local optima for each problem confirms the results from meta-heuristic search: there are patterns in

the distribution of local optima that increase with scale (problem size) and complexity (number of classes)

and will cause problems for many classes of meta-heuristic search.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The task of class modelling within early cycle object orientated

software engineering is often poorly tackled by humans. Issues such

as scale and complexity pose significant issues, but the ongoing his-

tory of software failures shows that their relative effect in creating

difficulties is not well understood. Recent research has demonstrated

that this task, also referred to as the class responsibility assignment

problem, can be successfully tackled by posing it as a search prob-

lem. For the sake of brevity we will hereafter refer to it as “class

modelling”, with the restriction to the context of the early stages of

the development life cycle being taken as read. The “search based

software engineering” (SBSE) approach to class modelling has been

illustrated using both evolutionary algorithms (EA) and ant colony

optimisation (ACO) to perform the underlying search. Each of these

outperforms methods based on a single improving solution, and has

been shown to display strengths and weaknesses—both in terms of

optimisation performance, and of how easily “standard” algorithms

can be applied to the domain. However, three major questions re-

main unanswered. The first is whether the problems caused by scale

and complexity are a result of human limitations, or do they also ex-

∗ Corresponding author. Tel.: +44 117 3283161.

E-mail address: james.smith@uwe.ac.uk (J. Smith).

URL: http://www.bit.uwe.ac.uk/~jsmith (J. Smith),

http://www.bit.uwe.ac.uk/~clsimons (C. Simons)

ist when the task is formulated for automated search? The second is

how task-specific information can be incorporated at various levels to

manage the global-local search trade-off, and aid search by avoiding

breaking constraints. The third is the identification of design prob-

lem characteristics that make automated search harder, to inform the

creation of a richer and more rigorous suite of benchmark problems

than currently exists.

Our contention is that because of its complex, subjective nature,

class modelling should be tackled via interactive search, augmented

with a surrogate fitness function to prevent user fatigue. Therefore

ideally the choice of search method should consider the ease with

which it can support users’ input via actions such as “freezing” satis-

factory parts of designs. Previously (Simons and Smith, 2012, 2013)

we compared ACO and EAs as global search algorithms for this task,

concluding that performance issues aside, there are practical reasons

for preferring to use some heuristics. For example, in an ACO “freez-

ing” of partial solutions can be simply achieved via direct changes to

the pheromone table. In contrast, it would necessitate manipulation of

an EA’s recombination and mutation operators on-the-fly, although

progress has been made in this direction by interleaving phases of

human manipulation and evolution (Vathsavayi et al., 2013).

However, these considerations are orthogonal to the comparative

search performance, so understanding the latter is vital before we

can disregard it, and clearly algorithmic simplicity cannot be a substi-

tute for poor performance. Initial investigations (Simons and Smith,

2013) showed that in their canonical form EAs outperformed ACO. In a

http://dx.doi.org/10.1016/j.jss.2014.11.034

0164-1212/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2014.11.034
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.11.034&domain=pdf
mailto:james.smith@uwe.ac.uk
http://www.bit.uwe.ac.uk/~jsmith
http://www.bit.uwe.ac.uk/~clsimons
http://dx.doi.org/10.1016/j.jss.2014.11.034


J. Smith, C. Simons / The Journal of Systems and Software 103 (2015) 440–451 441

recent paper we extended this work to incorporate the effect of local

search to create two different examples of the class of memetic algo-

rithms (MAs) (Krasnogor and Smith, 2005). Those preliminary studies

still showed that the MAs using evolution as the global search com-

ponent (hereafter M-EAs) found higher quality solutions than those

based on ACOs (hereafter M-ACO). It should be noted that for the

sake of “fairness” the ACOs in those papers did not make any use of

heuristic or instance-specific information.

This paper extends that study to examine the effect of different

ways in which information can be incorporated within meta heuristic

search. Each of these creates its own bias in determining the proba-

bility distribution functions that govern the generation of candidate

solutions. From the SBSE perspective it is important to gain an un-

derstanding of how these impact on performance as class modelling

problems vary in scale and complexity. In order to provide some

insights into these issues, Section 2 provides a brief background to

previous research in this problem domain, and the relationship be-

tween class modelling and the more abstract problem of graph par-

titioning. Section 3 describes the chosen representation, the global

and local search components considered, and different ways in which

problem-specific information can be incorporated. Section 4 describes

the experimental methodology used, then Section 5 describes, and

Section 6 analyses the results obtained. Finally Section 7 summarises

the findings and implications for SBSE in general, and early stage class

modelling in particular.

2. Background

2.1. What makes a class modelling problem hard?

Early lifecycle class modelling is an intensely human activity

wherein relevant concepts and information relating to a design prob-

lem are identified. High quality class models are crucial as the basis of

subsequent software development activities, as inferior designs can

lead to deleterious and costly down-stream consequences. Starting

from use case descriptions or user stories from the design problem

domain, various required software system actions and data are iden-

tified. In the object-oriented paradigm such actions and data corre-

spond to candidate ‘methods’ and ‘attributes’ to be grouped by means

of the ‘class’ construct. Class models thus reveal how these groupings

relate to relevant concepts and information in the problem domain.

There is evidence to suggest that act of early lifecycle class modelling

is non-trivial and demanding to perform, not least due to the scale and

complexity of the problem domain. For many problems the number

of methods and attributes can run to hundreds, with a corresponding

multiplicity of classes. Petre (2009) has suggested that software de-

sign problems are often wicked: too big, too ill-defined, too complex

for easy comprehension and solution. Sometimes the problems are

only fully understood after they are solved. Solving such problems is

rarely a matter of brute force or routine. Glass (2003) goes further,

suggesting that the scale and complexities of some software designs

may be beyond human comprehension. There is also evidence that

designers are blessed with varying degrees of modelling talent. Even

for experienced modellers, Glass notes that designer performance

may vary from 28:1 from the best to the worst. Curtis et al. (1998)

also note a range in talent, observing that only super-designers can

reason across the full breadth and depth of complex, ill-structured

problems in order to fully consider the consequences and decisions

of modelling decisions. From the field of education there is evidence

that class modelling is difficult to learn. In a study of 740 under-

graduates and 135 design problems, Svetinovic et al. (2005) observe

that with respect to concept identification, “some students just don’t

get it”.

To help overcome these difficulties, manual heuristics and search

strategies are available. For example, Larman (2008) suggests that

the required actions of the software system-to-be be regarded as

responsibilities, i.e., a contract or obligation of a class-to-be. Class

modelling then becomes an exercise in assigning responsibilities to

candidate classes. Larman proposes General Responsibility Assign-

ment Software Patterns (GRASP) to guide the class modeller. GRASP

reflect modelling principles such as separation of concerns, high in-

ternal class cohesion, and low coupling between classes. Wirfs-Brock

and McKean (2003) describe a responsibility-driven design approach

to class modelling as a process of discovery and invention. They pro-

pose a manual search strategy, in which modellers make educated

guesses about the kinds of inventions needed based on the nature

of the problem domain and the things that are critical to it. In this

manual search candidate models are evaluated from the perspectives

of: information flowing through the model; decision making, control

and coordination activities; and representations of real-world things

that the model needs to know about.

2.2. Search-based software engineering

Search-based software engineering (SBSE) is a well-established

discipline, applied across the whole software development lifecycle

(Zhang, 2014). Historically, comparatively little focus has been di-

rected to the upstream stages, although this is beginning to be ad-

dressed. Typically metrics relating to coupling and cohesion are used

to guide meta-heuristic search of design spaces of object-oriented

class models. Bowman et al. (2010) used a multi-objective EA to op-

timise designs for a number of pre-specified metrics, but only con-

sidered a single problem instance. Simons et al. (2010) and Simons

and Parmee (2012) applied interactive EAs, using linear regression to

learn a surrogate fitness model combining coupling with a number of

“elegance metrics” to approximate users’ subjective preferences for

different problems. Working slightly later in the development life-

cycle, Sievi-Korte et al. (2010) used an M-EA, and Vathsavayi et al.

(2013) interleaved human and evolutionary adaptation of the usage

of patterns.

Although any search algorithm could be used in SBSE, research

effort has tended to concentrate on EAs. Previously we compared

the use of ACOs and EAs for this problem (Simons and Smith, 2012,

2013), concluding that given sufficient computational budget, global

search via EAs was more effective at finding high quality solutions

than that using ACO. When the computational budget was reduced

(as is, for example, often the case in interactive search) the situation

was reversed. However, with both algorithms, and both representa-

tions examined, a major issue was dealing with the constraint that

a valid class model should contain at least one attribute and at least

one method. Those papers used penalty functions (all invalid models

were given zero fitness) and the use of random regeneration of invalid

solutions. Dealing more efficiently with this constraint would neces-

sitate either a significant adaptation of the underlying global search

heuristics, or the provision of a “repair” mechanism.

A well designed local search algorithm that systematically exam-

ines the effect of moving elements between classes provides a simple

way of providing the latter, and also of improving valid solutions. In

a recent paper we reported preliminary studies on the influence of

such a component (Smith and Simons, 2013). Results showed that in

the absence of other forms of information the M-EAs still discovered

higher quality solutions that M-ACO, albeit over a longer timescale.

This could be interpreted in one of two ways—either that the M-ACO

are better given a limited computational budget, or that the M-EAs

are better able to escape local optima. However, that paper did not

permit any use of heuristic functions or other problem-specific adap-

tations. While such knowledge might require substantial alterations

of operators within an evolutionary framework, it is standard practice

in ACO research and is readily incorporated, as will be shown in later

sections.



Download English Version:

https://daneshyari.com/en/article/6885636

Download Persian Version:

https://daneshyari.com/article/6885636

Daneshyari.com

https://daneshyari.com/en/article/6885636
https://daneshyari.com/article/6885636
https://daneshyari.com

