
The Journal of Systems and Software 103 (2015) 102–117

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

On applying machine learning techniques for design pattern detection

Marco Zanoni∗, Francesca Arcelli Fontana, Fabio Stella

Department of Informatics, University of Milano-Bicocca, Milano 20126, Italy

a r t i c l e i n f o

Article history:

Received 28 May 2014

Revised 19 January 2015

Accepted 20 January 2015

Available online 30 January 2015

Keywords:

Design pattern detection

Machine learning techniques

a b s t r a c t

The detection of design patterns is a useful activity giving support to the comprehension and maintenance of

software systems. Many approaches and tools have been proposed in the literature providing different results.

In this paper, we extend a previous work regarding the application of machine learning techniques for design

pattern detection, by adding a more extensive experimentation and enhancements in the analysis method.

Here we exploit a combination of graph matching and machine learning techniques, implemented in a tool

we developed, called MARPLE-DPD. Our approach allows the application of machine learning techniques,

leveraging a modeling of design patterns that is able to represent pattern instances composed of a variable

number of classes. We describe the experimentations for the detection of five design patterns on 10 open

source software systems, compare the performances obtained by different learning models with respect to a

baseline, and discuss the encountered issues.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Design pattern detection (DPD) is an active field of research, useful

to support software maintenance and reverse engineering. In partic-

ular, it gives useful hints to understand some design decisions, which

are helpful for the comprehension of the system and the following

reengineering steps. Moreover, design pattern detection (DPD) helps

also during the redocumentation phase of a system.

The detection techniques used in the literature span many areas,

like graph theory, constraints satisfaction, fuzzy sets, machine learn-

ing and computation of similarity measures, but an optimal solution

has not been found yet. Many causes concur to this situation, e.g., de-

sign pattern definitions, programming languages. The definitions of

design patterns, e.g., the ones reported in Gamma et al. (1995), often

focus on the pattern’s intent, and less on its implementation, which is

instead relevant from the reverse engineering point of view, because

it is the input of the detection task. The different possible implemen-

tations of a design pattern are known as variants (Niere et al., 2002).

Variants are mainly due to two factors: first, a single abstract solution

can have different implementations, having exactly the same struc-

ture and behavior; second, as the definition of the pattern is informal,

two different developers may have slightly different interpretations

of the pattern definition, and they can produce different variants, hav-

ing a different structure and, in theory, the same external behavior.

∗ Corresponding author. Tel.: +390264487848.

E-mail addresses: marco.zanoni@disco.unimib.it (M. Zanoni),

arcelli@disco.unimib.it (F. Arcelli Fontana), stella@disco.unimib.it (F. Stella).

As the variants problems exists, also the interpretation and de-

tection of design patterns can be subjective. In this context, a com-

plete and closed specification of a pattern instance, used to perform

an automatic detection, is not possible. We apply machine learning

techniques to allow developers picking examples of what is a good

or bad instance of a design pattern, and let a tool choose which fea-

tures have to be considered for the detection. This approach allows

to easily customize the detection, supporting also new patterns. With

this approach, the set of correct and incorrect examples represents

the informal specification (or detection rule) of a pattern. Hence, by

changing the composition of example sets, it is possible to change

the detection rule of patterns, e.g., focusing the detection on differ-

ent variants. The choices among correct and incorrect have to be

performed by human experts. Example sets could be produced by a

single development team, or could be available from the literature

as a corpus, shared and agreed by many experts. Such a corpus is

not available in the literature, at the best of our knowledge, so we

created our set of examples for experimenting the learn-by-example

approach described in this paper.

In our work, a module, called Joiner, extracts (possibly) all the

pattern instances contained in a software system, while another

module, called Classifier, classifies as correct or incorrect the in-

stances detected by the Joiner, refining its results. The role of the

Joiner is to find all the instances matching an exact rule. This rule

is very general, and considers only the fundamental traits of the

pattern structure. As a consequence, the matching tends to pro-

duce a large number of instances, achieving high recall, but result-

ing in low precision. Our rules for DPD are defined by exploiting

some particular kind of micro-structures in the code, which can be

http://dx.doi.org/10.1016/j.jss.2015.01.037

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.01.037
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.01.037&domain=pdf
mailto:marco.zanoni@disco.unimib.it
mailto:arcelli@disco.unimib.it
mailto:stella@disco.unimib.it
http://dx.doi.org/10.1016/j.jss.2015.01.037


M. Zanoni et al. / The Journal of Systems and Software 103 (2015) 102–117 103

unambiguously detected and capture relevant features of the

pattern.

The separation of the approach in two phases (realized by the

Joiner and the Classifier) has the benefit of submitting a limited num-

ber of candidates to the Classifier, but with a significant percentage of

true instances. The choice of using a classification process after an ex-

act matching is one of the main features characterizing our approach.

Moreover, the process does not depend upon specific machine learn-

ing technologies, allowing the experimentation of different classifiers

and clustering algorithms.

The main contributions of the whole DPD approach are:

• a modeling of design patterns able to represent instances com-

posed of different numbers of elements, filling them in a structure

taking into account the relationships among the different parts of

a pattern;
• the formulation of the problem of DPD as a supervised classifica-

tion task; this is possible due to the use of a pre-processing strategy

capable to overcome the unstructured (from the data mining point

of view) nature of design pattern instances;
• the construction of a large dataset of manually verified design

pattern instances, which is useful and necessary for benchmark

purposes.

We implemented the DPD approach based on machine learning

techniques in our MARPLE project, with the name of MARPLE-DPD. In

a previous paper (Arcelli Fontana and Zanoni, 2011), we introduced

the general approach. Here, we extend and enhance the experimen-

tation, by:

1. testing more and new patterns,

2. using more machine learning techniques,

3. testing algorithms on a larger dataset (publicly available), and

4. applying an automatic and systematic experimental method for

the optimization of the algorithms’ parameters.

Moreover, we enhance the detection process by introducing a cus-

tom clustering algorithm in the particular cases where the pattern

structure is flat, without nesting levels. This enhancement has the

goal to provide classifier algorithms with a more direct representa-

tion of pattern instances.

The approach is experimented for the detection of five design

patterns (Singleton, Adapter, Composite, Decorator, Factory Method)

on 10 open source software systems (having a total size of about

540 kLOC). The obtained performances are presented, using three

different performance measures. The patterns to test were chosen by

looking for the most frequently used, as described in the specialized

literature.

In the experiments (see Section 6.2), we subdivided patterns in

two groups. For Singleton and Adapter, we applied only classification

models. For the second group, containing Composite, Decorator and

Factory Method, we applied a cascade of clustering and classifica-

tion models. We obtained good performances especially for Single-

ton, Adapter and Factory Method. From our evaluation, lower per-

formances in the other patterns were due to the lack of available

pattern instance examples. All the tested models performed better

than the baseline model, except for Composite, where no statistically

significant improvement was detected. In many cases support vector

machines (SVMs), decision trees and random forests scored the best

results. K-means was the only clustering model producing meaningful

results.

The paper is organized as follows. In Section 2 we introduce some

basic notions on DPD, relevant for the comprehension of our approach.

In Section 3 we introduce the architecture and the main modules of

MARPLE-DPD. In Section 4 we describe the modeling of design pat-

terns and their detection process. In Section 5 we describe in de-

tail the proposed classification process. In Section 6 we report the

experiments we performed with different clustering and classifica-

tion algorithms, outlining the performance differences among them.

In Section 7 we outline the threats to validity of our approach. In

Section 8 we introduce some related works on DPD, and in particular

those based on approximated techniques. Finally, in Section 9 we give

our conclusions and discuss the main future developments.

2. Background

In the following, we introduce some basic terminology on DPD

and the source code features, i.e., micro-structures, we use in our

approach.

2.1. Code entities

Code entity is the name we give to any code construct that is

uniquely identifiable by its name (and the name of its containers). In

the object-oriented paradigm, code entities are classes (but also inter-

faces, enums, annotations, etc.), methods and attributes. The concept

of code entity will recur because of the definition of micro-structures.

2.2. Micro-structures

To have an idea of what micro-structures (Arcelli Fontana et al.,

2011a) are, it is possible to see them as facts about a pair of code

entities: a source code entity and a destination code entity; the two

code entities can also coincide. The definition of micro-structures al-

lows to think about a software system as a graph, where code entities

are associated with nodes, while micro-structures are associated with

edges. Differently from design patterns, micro-structures are not am-

biguous. Once a micro-structure has been specified in terms of the

source code details used to implement it, it can be detected.

In our approach for DPD, we exploit different kinds of micro-

structures: elemental design patterns (EDPs; Smith and Stotts, 2002),

design patterns clues (Arcelli Fontana et al., 2011b, clues in the follow-

ing) and micro patterns (Gil and Maman, 2005). Clues and elemental

design patterns (EDPs) share the same detail level, as in general they

can be detected by the analysis of single statements and elements of

a class, like method invocations or field declarations. EDPs capture

object-oriented best practices and are independent of any program-

ming language; clues aim to identify basic structures peculiar to each

design pattern. Micro patterns have been defined with the intent to

capture recurrent patterns in the implementation of classes, e.g., con-

cerning the number of attributes or methods and their modifiers.

In spite of the differences between them, these micro-structures

can be used for both the construction and the detection of design pat-

terns. We provide, in Listing 1, an example of the “restricted creation”

micro pattern.

An instance of this micro pattern can be found in classes without

public constructors and with at least one static field of the same

type of the class. Many classes following the Singleton design pattern

satisfy these constraints, e.g., java.lang.Runtime. Other examples of

micro-structures are given in Section 4.1.4.

2.3. Design pattern detection

The definition of design patterns (Gamma et al., 1995) describes

the roles of the elements composing them. Roles are the names of the

tasks that each class (sometimes also methods) in a design pattern

must accomplish. As there is a limited number of tasks to accomplish

in a single design pattern, the number of roles in each pattern is fixed.

A role mapping is the assignment of a role to each class composing

a pattern instance. In any design pattern instance, each role must be

mapped to at least one class, i.e., each class must have a role in the

pattern. The extraction of role mappings allows the localization of

design pattern instances in a software system, realizing the goal of

DPD.



Download English Version:

https://daneshyari.com/en/article/6885648

Download Persian Version:

https://daneshyari.com/article/6885648

Daneshyari.com

https://daneshyari.com/en/article/6885648
https://daneshyari.com/article/6885648
https://daneshyari.com

