
The Journal of Systems and Software 103 (2015) 182–197

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Practical and representative faultloads for large-scale software systems

Pedro Costa a,∗, João Gabriel Silva b, Henrique Madeira b

a CISUC/ISCAC – Polytechnic Institute of Coimbra, 3040 Coimbra, Portugal
b DEI/CISUC – University of Coimbra, 3030 Coimbra, Portugal

a r t i c l e i n f o

Article history:

Received 8 December 2013

Revised 31 October 2014

Accepted 2 February 2015

Available online 7 February 2015

Keywords:

Experimental dependability evaluation

Dependability benchmarking

Injection of software faults

a b s t r a c t

The faultload is one of the most critical elements of experimental dependability evaluation. It should embody a

repeatable, portable, representative and generally accepted fault set. Concerning software faults, the definition

of that kind of faultloads is particularly difficult, as it requires a much more complex emulation method than

the traditional stuck-at or bit-flip used for hardware faults. Although faultloads based on software faults have

already been proposed, the choice of adequate fault injection targets (i.e., actual software components where

the faults are injected) is still an open and crucial issue. Furthermore, knowing that the number of possible

software faults that can be injected in a given system is potentially very large, the problem of defining a

faultload made of a small number of representative faults is of utmost importance. This paper presents a

comprehensive fault injection study and proposes a strategy to guide the fault injection target selection to

reduce the number of faults required for the faultload and exemplifies the proposed approach with a real

web-server dependability benchmark and a large-scale integer vector sort application.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

It is nowadays generally accepted that most of the software com-

ponents have residual faults, also known as software defects or bugs,

which escape the traditional testing phases of software development

process. Several research studies also show not only a clear predom-

inance of software faults (Kalyanakrishnam et al., 1999; Lee and Iyer,

1995; Sullivan and Chillarege, 1992; Gray, 1990) when compared to

other types of system faults, but also that its weight on the overall

system dependability will tend to increase. Among the main causes

for those circumstances, besides the well-known technical difficulties

intrinsic to the software development and testing process (Lyu, 1996),

one can mention the huge complexity of today’s software and the in-

creasing pressure to reduce time to market. This scenario emphasizes

the importance of system dependability assessment as a measure of

confidence that can be relied on a given system. This includes the

evaluation of attributes like availability, reliability, safety, integrity,

among others. More than ever, practical approaches for the evalu-

ation of the dependability of computer systems are needed, espe-

cially standardized dependability benchmarks that allow comparing

dependability attributes of analogous and alternative software prod-

ucts or components. A fundamental characteristic that distinguishes

dependability benchmarking from existing experimental dependabil-

ity evaluation and validation techniques is that benchmarks should

∗ Corresponding author. Tel.: +351 239790000.

E-mail addresses: pncosta@dei.uc.pt (P. Costa), jgabriel@dei.uc.pt

(J.G. Silva), henrique@dei.uc.pt (H. Madeira).

represent an agreement that is accepted by the computer industry

and/or by the user community. However, the experimental evaluation

of the dependability of computer systems is very difficult (Carreira et

al., 1995) as it depends on fault activation probability, which in turn

depends on internal and external system factors like the different

layers of the software, the actual hardware where the software is

running, environment issues, and human interaction.

After the success of the performance benchmarking initiatives that

caught the attention of the industry in the last decades and have

driven the creation of organizations like TPC (Transaction Processing

Performance Council) (TPC, 2015) and SPEC (Standard Performance

Evaluation Corporation) (SPEC, 2015), dependability benchmarking

has been the focus of attention of researchers and practitioners in

recent years (Kanoun and Spainhower, 2008; Brown and Patterson,

2000; Vieira and Madeira, 2003; Zhu et al., 2003; Lightstone et al.,

2003; Kanoun et al., 2001; Christmanson and Chillarege, 1996; Durães

and Madeira, 2002). To many business critical systems and applica-

tions, dependability attributes like availability, integrity and relia-

bility, among others, are as important as performance. The goal of

dependability benchmarking is thus to provide a standard procedure

specification to characterize a computer system or component, pro-

viding the assessment of dependability related measures. The main

components of a dependability benchmark suite are (Kanoun and

Spainhower, 2008; Koopman and Madeira, 1999):

• Workload – Representing the work to be done by the system

during the benchmark run and used to create a realistic operating

scenario.

http://dx.doi.org/10.1016/j.jss.2015.02.001

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.02.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.02.001&domain=pdf
mailto:pncosta@dei.uc.pt
mailto:jgabriel@dei.uc.pt
mailto:jgabriel@dei.uc.pt
http://dx.doi.org/10.1016/j.jss.2015.02.001


P. Costa et al. / The Journal of Systems and Software 103 (2015) 182–197 183

Target System

Faulty Component

Benchmark Target

Software
Fault

Fault Injection
Target

Part of the target
system under

evaluation

Measures

e

Fig. 1. Approach for software fault injection.

• Faultload – Representing a repeatable, portable, representative

and generally accepted set of faults and stressful conditions that

could lead to undependability, if not properly handled by the

system.
• Measures – Characterizing the performance and dependability of

a system executing the workload in the presence of the faultload.
• Experimental setup and benchmark procedures – Describing

the setup required to run the benchmark and the set of procedures

and rules that must be followed during the benchmark execution

in order to ensure uniform conditions for measurement.

Among these components, one of the most critical and difficult

to define is, undoubtedly, the faultload (Durães and Madeira, 2004),

since it should represent a repeatable, portable, representative and

generally accepted fault set. That difficulty is even higher in what con-

cerns software faults, since they require a much more complex emu-

lation method than the usual bit-flip fault injection approach used to

emulate hardware faults. Furthermore, a faultload based on software

faults requires a clear separation between the software components

that are selected as fault injection target and the benchmark target

(i.e., system under evaluation), as the injection of software faults ac-

tually changes the code of the target component. This way, the faults

should be injected in one component (the target) in order to evaluate

their impact on the other components or on the overall system (see

Fig. 1). In fact, the software faults injected in the target component

actually allow answering the question of what would happen to the

system if a residual fault in such component became activated.

A representative faultload must contain faults that represent the

common programming bugs that escape the traditional software test-

ing phases and still persist in existent software products (Durães et al.,

2004). Although the faultload definition of that kind of faults has al-

ready been proposed (Durães and Madeira, 2006), a problem still per-

sists when that model is applied to very large and complex systems.

Commonly, there are a large number of possible target components

for fault injection and, consequently, that represents a huge number of

possible software faults to be injected. Additionally, considering the

time of each experiment (typically, the system should be restarted

before injecting a new fault), one can easily observe that, in practice,

it is impossible to run and test all the fault injection possibilities (i.e.,

the exhaustive set of software faults). For these reasons, the use of

dependability benchmarks driven by software faultloads (e.g., such

as the ones proposed in Kanoun and Spainhower (2008) has a major

problem: it could take years to inject the complete faultload, which

means that it is not possible to run such dependability benchmarks in

practice. It is worth noting that the complete faultload encompasses

the exhaustive set of software fault types and locations, representing

the most common software bugs found in field, in all possible target

locations. This limitation is especially significant in large and complex

systems, where, in order to assure the necessary representativeness,

the execution time of those benchmarks can take months or years due

the mentioned faultload size. This is the case when the target system

is a large piece of software, such as an operating system (OS).

Reducing the size of the faultload (but keeping it representative

enough to obtain valid results) is therefore essential to show industry

and the research community that it is possible to use dependability

benchmarks in large-scale systems.

This paper presents the results of more than two years of con-

tinuous fault injection experiments in real systems and proposes a

strategy to answer a still open and crucial question: how to choose

adequate fault injection targets, and thus reduce the total software

fault injection experiments, without restricting the benchmark re-

sults accuracy.

It should be noticed that among the mentioned faultload proper-

ties (repeatability, portability and representativeness), the represen-

tativeness is the one that needs special attention when reducing the

faultload. In fact, properties such as repeatability and portability of

the faultload are either not affected by the reduction of the number

of faults or it is even easier to satisfy those properties with a reduced

faultload.

This paper is organized as follows. Related research is discussed

in Section 2. Section 3 presents the experimental strategy followed in

our study as well as a detailed description of the proposed method-

ology for the definition of compact and representative faultloads.

Section 4 describes the test-bed used to demonstrate the effectiveness

of the proposed approach with two real and different applications: a

web-server dependability benchmark and a large-scale integer vector

sort application. Section 5 proposes an approach that can be used to

reduce the size of a software faultload and proposes two ready-to-use

calibrated faultloads specifically generated for the target system used

in this research work. Finally, Section 6 presents the conclusions.

2. Background

Experimental dependability evaluation and dependability bench-

marking has caught researchers’ attention in the last few years and

many experimental approaches for the evaluation of computer sys-

tems dependability have been proposed for several different applica-

tion domains. This section briefly summarizes previous dependability

evaluation systems proposals and surveys the different options used

for the definition of faultloads, especially for the cases where fault-

loads are based on software faults.

A general methodology for benchmarking the availability of com-

puter systems was introduced in Brown and Patterson (2000). This

work uses fault injection to cause situations where software RAID

(Redundant Array of Inexpensive Disks) systems availability may be

compromised. It adopted the workload and performance measures

from existing performance benchmarks.

A dependability benchmark for OLTP (On-line Transaction Pro-

cessing) application environments is proposed in Vieira and Madeira

(2003). This benchmark uses the workload of the TPC-C performance

benchmark (TPC, 2012), an already well-established and agreed

benchmark, and specifies the measures and all the steps required

to evaluate both the performance and dependability features of OLTP

systems, with emphasis on availability. This study uses as faultload a

set of operator faults that emulates real faults experienced by OLTP

systems in the field. Another dependability benchmark for transac-

tional systems is proposed in (Buchacker and Tschaeche, 2003). Al-

though this study also adopted the workload from the TPC-C perfor-

mance benchmark, it considers a faultload based on hardware faults.

Research work at Sun Microsystems proposed a high-level frame-

work specifically dedicated to availability benchmarking of computer

systems (Zhu et al., 2003). The proposed approach decomposes avail-

ability in three key components: fault/maintenance rate, robustness

and recovery. Within the scope of that framework, two dependabil-

ity benchmarks were developed: one that measures specific aspects

of a system robustness on handling maintenance events, such as the

replacement of a failed hardware component or the installation of a

software patch (Zhu et al., 2003); and a second benchmark for mea-

suring system recovery on a non-clustered standalone system (Mauro

et al., 2004).



Download English Version:

https://daneshyari.com/en/article/6885654

Download Persian Version:

https://daneshyari.com/article/6885654

Daneshyari.com

https://daneshyari.com/en/article/6885654
https://daneshyari.com/article/6885654
https://daneshyari.com

