
The Journal of Systems and Software 103 (2015) 248–265

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A comprehensive study of the predictive accuracy of dynamic

change-impact analysis

Haipeng Cai∗, Raul Santelices

Department of Computer Science and Engineering University of Notre Dame, Notre Dame IN 46556, USA

a r t i c l e i n f o

Article history:

Received 3 June 2014

Revised 7 February 2015

Accepted 9 February 2015

Available online 16 February 2015

Keywords:

Impact analysis

Impact prediction

Accuracy study

a b s t r a c t

The correctness of software is affected by its constant changes. For that reason, developers use change-impact

analysis to identify early the potential consequences of changing their software. Dynamic impact analysis

is a practical technique that identifies potential impacts of changes for representative executions. However,

it is unknown how reliable its results are because their accuracy has not been studied. This paper presents

the first comprehensive study of the predictive accuracy of dynamic impact analysis in two complementary

ways. First, we use massive numbers of random changes across numerous Java applications to cover all

possible change locations. Then, we study more than 100 changes from software repositories, which are

representative of developer practices. Our experimental approach uses sensitivity analysis and execution

differencing to systematically measure the precision and recall of dynamic impact analysis with respect to

the actual impacts observed for these changes. Our results for both types of changes show that the most

cost-effective dynamic impact analysis known is surprisingly inaccurate with an average precision of 38–50%

and average recall of 50–56% in most cases. This comprehensive study offers insights on the effectiveness of

existing dynamic impact analyses and motivates the future development of more accurate impact analyses.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Modern software is increasingly complex and changes constantly,

which threatens its quality, reliability, and maintainability. Failing

to identify and fix defects caused by software changes can have se-

rious effects in economic and human terms. Therefore, it is crucial

to provide developers with effective support to identify dependen-

cies in code and deal with the impacts of changes that propagate

via those dependencies. Specifically, developers must understand the

risks of modifying a location in a software system before they can bud-

get, design, and apply changes there. This activity, called (predictive)

change-impact analysis Bohner and Arnold (1996); Li et al. (2013); Ra-

jlich (2011), can be quite challenging and expensive because changes

affect not only the modified parts of the software but also the parts

where their effects propagate.

An existing important approach to assessing the effects of changes

in a program is dynamic impact analysis Apiwattanapong et al. (2005);

Breech et al. (2005, 2006); Law and Rothermel (2003a, 2003b); Orso

et al. (2003, 2004); Ren et al. (2004). This approach uses runtime infor-

mation such as profiles and traces to identify the entities that might

∗ Corresponding author. Tel.: +1 601 8184 273.

E-mail addresses: hcai@nd.edu, chapering@gmail.com (H. Cai), rsanteli@nd.edu

(R. Santelices).

be affected by changes under specific conditions—those created by

the test suite for that program. The resulting impact sets (affected

entities) of dynamic approaches that are safe for the execution sets

utilized are smaller Law and Rothermel (2003b), and thus usually

more manageable, than those obtained by safe static analyses as they

focus on only a particular subset of all possible inputs (and executions

accordingly) Apiwattanapong et al. (2005). For scalability, most dy-

namic impact analyses operate on methods as the entities that can be

changed and be impacted by changes Apiwattanapong et al. (2005);

Breech et al. (2005, 2006); Law and Rothermel (2003a, 2003b); Orso

et al. (2003, 2004); Ren et al. (2004). At the statement level, dynamic

slicing Agrawal and Horgan (1990); Korel and Laski (1988); Zhang

et al. (2003), in its forward version, can be used for impact analysis in

greater detail but at a greater computational cost Law and Rothermel

(2003b); Masri et al. (2006); Orso et al. (2004).

Despite its attractiveness, however, dynamic impact analysis has

not been evaluated for its ability to correctly predict the actual impacts

that changes have on software. Techniques exist to describe the im-

pacts of changes after changes have been made (e.g., Apiwattanapong

et al. (2007); Ramanathan et al. (2006); Santelices et al. (2010)). How-

ever, for predictive purposes—before the changes are even known—

the usefulness of dynamic impact sets remains a mystery. For in-

stance, Chianti (Ren et al., 2004) and its applications (Ren et al., 2006;

Stoerzer et al., 2006) evaluate their impact analysis results with re-

spect to affected test cases or changes between pairs of program

http://dx.doi.org/10.1016/j.jss.2015.02.018

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.02.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.02.018&domain=pdf
mailto:hcai@nd.edu
mailto: chapering@gmail.com
mailto:rsanteli@nd.edu
http://dx.doi.org/10.1016/j.jss.2015.02.018


H. Cai, R. Santelices / The Journal of Systems and Software 103 (2015) 248–265 249

versions, but these approaches are descriptive (Bohner and Arnold,

1996) rather than predictive. The rest of the literature focuses only

on comparing the sizes of dynamic impact sets (i.e., relative preci-

sion) and the relative efficiency of the techniques without consider-

ing how closely those impact sets approximate the real impacts of

changes.

To address this problem, in this paper, we introduce a novel ap-

proach for assessing the accuracy (precision and recall) of dynamic

impact analyses. The approach uses SensA, a sensitivity-analysis tech-

nique we recently developed (Cai et al., 2014a; Santelices et al.,

2013b). We adapted SensA for making large numbers of random

changes efficiently across the software and running dynamic impact

analysis on those change locations. While random changes do not nec-

essarily represent all changes, the impacts they find (or not) can help

identify deficiencies in precision and recall of dynamic impact analyses

across the entire software. The benefit of this approach is that all meth-

ods in a program can be analyzed, in contrast with others based on

code repositories which, if available, offer selections of changes that,

although supposedly more representative of developer practice, are

less comprehensive.

Nevertheless, it is important to also incorporate in a study of im-

pact analysis the changes that developers typically make to comple-

ment the comprehensiveness of the new approach with the represen-

tativity of real changes. Thus, we designed our approach to support

repository changes in addition to the random changes inserted by

SensA. Specifically, our approach takes changes committed by devel-

opers into SVN repositories and also changes (bug fixes) from the SIR

repository Do et al. (2005) made by other researchers for their own

studies.

To find the ground truth—the code actually impacted by changes—

our approach uses execution differencing (Ramanathan et al., 2006;

Santelices et al., 2010; Sumner and Zhang, 2013) on the program be-

fore and after each change is applied to determine which code is really

affected (i.e., code that changes states or occurrences (Podgurski and

Clarke, 1990)). By design, we use the same test suite as the dynamic

impact analysis to assess the accuracy of that analysis under the

same runtime conditions. The similarities and differences between

this ground truth and the impact sets indicate how accurate the eval-

uated impact analysis can be for predicting actual impacts.

Using this approach with both random and repository-based

changes, we performed a comprehensive empirical study of the ac-

curacy of dynamic impact analysis on multiple Java subjects. For

dynamic impact analysis, we chose the best known and most cost-

effective technique from the literature: PathImpact (Law and Rother-

mel, 2003a) with execute-after-sequences (EAS) (Apiwattanapong

et al., 2005), which we call PI/EAS. (Another technique, Influence-

Dynamic (Breech et al., 2006), is only marginally more precise yet

much more expensive, and also more complicated, than PI/EAS.) For

different sets of changed methods in each subject, we obtained the

impact set predicted by PI/EAS and computed its precision and recall

with respect to the ground truth.

The results of our study are surprising. On average for all subjects,

the precision of the impact sets ranged between 38% and 50% depend-

ing on the change type. In other words, at most one in two methods

reported by PI/EAS was actually impacted by the studied changes.

Moreover, the average recall of PI/EAS was about 50–56% except for

SIR changes, for which the average recall was 87%. These results reveal

that dynamic impact analysis can also miss many real impacts. Inter-

estingly, the accuracy of PI/EAS was lower for SVN changes, made by

developers in practice, than for artificial changes (random and SIR).

These results suggest that developers should not expect a great accu-

racy from existing dynamic impact analyses and that there is plenty

of room for improving such techniques.

Our study also showed that, often, the precision was high and

the recall was low or vice versa. We hypothesized and confirmed

that, when the program execution is shorter before a change (when

predictive impact analysis is performed) than after a change, runtime

effects are missed (e.g., many methods execute only in the changed

program). Interestingly, the precision in such cases is greater than

usual, suggesting that methods in dynamic impact sets are more likely

to be truly impacted if they execute relatively soon after the change.

In all, the main contributions of this paper are:

• An approach for evaluating the accuracy of dynamic change-

impact analysis techniques with respect to the actual impacts of

source-code changes
• An implementation of the approach that applies massive numbers

of changes to support accuracy studies with both artificial and

repository changes
• A comprehensive study—the first of its kind—on multiple Java

subjects that estimates the accuracy of the most representative

and cost-effective dynamic impact analysis known and shows

the inadequacy of existing techniques for predicting the effects

of changes

The rest of this paper is organized as follows. Section 2 details the

problem addressed by, and the motivation of, this work. Section 3 pro-

vides the necessary background and a working example. Section 4 dis-

cusses the qualities of PI/EAS that affect its accuracy. Then, Section 5

presents our approach for assessing that accuracy with artificial and

repository changes. Sections 6 and 7 present our studies using this

approach for both types of changes. Finally, Section 8 discusses related

work and Section 9 concludes.

2. Problem and motivation

The new paradigm of software engineering focuses on software

evolution, which is characteristic of incremental changes (Rajlich,

2006; Rajlich and Gosavi, 2004). One of the two steps of designing

incremental changes is impact analysis, a key activity during software

development that assesses the full extent of the changes (Rajlich,

2006, 2014). In fact, several industrial user studies have also shown

that developers widely recognize the crucial role of impact analysis

in their daily tasks (LaToza et al., 2006; de Souza and Redmiles, 2008;

Tao et al., 2012), with views on impact analysis issues varying with

different perspectives and organization levels (Rovegard et al., 2008).

However, developers face many challenges to impact analy-

sis (Acharya and Robinson, 2011; LaToza and Myers, 2010; LaToza

et al., 2006; Tao et al., 2012), and one of the most critical issues is

the uncertain results produced by existing analyses (Rovegard et al.,

2008; de Souza and Redmiles, 2008). In addition, an even more criti-

cal issue reported by developers is that available analyses are incom-

plete (Rovegard et al., 2008). Taken together, these studies show that

developers have already realized and encountered the inaccuracy of

today’s impact analysis in practice. And furthermore, such inaccu-

racy has been suggested as an issue with existing analysis techniques

and tool supports that block their adoption in practice (Acharya and

Robinson, 2011; Rovegard et al., 2008).

On the other hand, despite of a large and growing body of research

on impact analysis (Lehnert, 2011; Li et al., 2013), the empirically

suggested inaccuracy has not yet been formally studied or systemati-

cally quantified (Li et al., 2013). Although a great number of automatic

impact-analysis tools have been developed as well (e.g., Breech et al.

(2006); Law and Rothermel (2003a); Orso et al. (2003)), the accuracy

of most existing impact analyses was evaluated using relative mea-

sures only (e.g., the ratios of impact-set sizes of one technique over the

other) with respect to the execution sets utilized by the analysis (Li

et al., 2013). Particularly, when it comes to predictive impact analysis,

empirical accuracy measurement with respect to actual impact sets

(as ground truth) is still missing.

While predictive impact analysis plays a vital role in driving soft-

ware evolution as it enables developers to assess potential risks and

consequences of candidate changes during the planning phase for



Download English Version:

https://daneshyari.com/en/article/6885660

Download Persian Version:

https://daneshyari.com/article/6885660

Daneshyari.com

https://daneshyari.com/en/article/6885660
https://daneshyari.com/article/6885660
https://daneshyari.com

