
The Journal of Systems and Software 101 (2015) 245–259

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Quantifying usability of domain-specific languages: An empirical study

on software maintenance

Diego Albuquerque a,b,∗, Bruno Cafeo b,2, Alessandro Garcia b,2, Simone Barbosa b,2,
Silvia Abrahão c,3, António Ribeiro a,1

a University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
b Pontifical Catholic University of Rio de Janeiro – PUC-Rio, Rua Marquês de São Vicente, 225, 22453-900, Rio de Janeiro, Brazil
c Valencia University of Technology, Camino de Vera, 46022, Valencia, Spain

a r t i c l e i n f o

Article history:

Received 2 April 2014

Revised 20 October 2014

Accepted 27 November 2014

Available online 22 December 2014

Keywords:

DSL

Usability

Metrics

a b s t r a c t

A domain-specific language (DSL) aims to support software development by offering abstractions to a par-

ticular domain. It is expected that DSLs improve the maintainability of artifacts otherwise produced with

general-purpose languages. However, the maintainability of the DSL artifacts and, hence, their adoption in

mainstream development, is largely dependent on the usability of the language itself. Unfortunately, it is

often hard to identify their usability strengths and weaknesses early, as there is no guidance on how to

objectively reveal them. Usability is a multi-faceted quality characteristic, which is challenging to quantify

beforehand by DSL stakeholders. There is even less support on how to quantitatively evaluate the usability

of DSLs used in maintenance tasks. In this context, this paper reports a study to compare the usability of

textual DSLs under the perspective of software maintenance. A usability measurement framework was de-

veloped based on the cognitive dimensions of notations. The framework was evaluated both qualitatively

and quantitatively using two DSLs in the context of two evolving object-oriented systems. The results sug-

gested that the proposed metrics were useful: (1) to early identify DSL usability limitations, (2) to reveal

specific DSL features favoring maintenance tasks, and (3) to successfully analyze eight critical DSL usability

dimensions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A domain-specific language (DSL) aims to facilitate construction

of software artifacts through specialized abstractions and notations

(Langlois et al., 2007). DSLs are increasingly being used in many soft-

ware engineering activities, including designing and checking archi-

tectural rules (e.g. Gurgel, 2012; Moha et al., 2010). Nevertheless, the

difficulties of using DSLs have become more apparent when exposed

to software maintenance circumstances (Van Deursen et al., 2000;

Van Deursen and Klint, 1998). Several studies (Van Deursen et al.,

2000; Langlois et al., 2007; Nishino, 2012; Van Deursen and Klint,

1998; Mernik et al., 2005) concluded that these difficulties might ad-

versely lead to higher maintenance effort. An important factor that

∗ Corresponding author. Tel.: +351 253604430; fax: +351 253604430.

E-mail addresses: diego.l.albuquerque@gmail.com, pg19789@alunos.uminho.pt

(D. Albuquerque), bcafeo@inf.puc-rio.br (B. Cafeo), afgarcia@inf.puc-rio.br (A. Garcia),

simone@inf.puc-rio.br (S. Barbosa), sabrahao@dsic.upv.es (S. Abrahão),

anr@di.uminho.pt (A. Ribeiro).
1

Tel.: +351 253604430; fax: +351 253604430.
2

Tel.: +55 21 3527 1500; fax: +55 21 3527 1500.
3

Tel.: +34 96 3877000; fax: +34 96 3877000.

contributes to increased maintenance effort is the low usability of

such DSLs (Barišic et al., 2011). The usability of a DSL artifact (e.g., a

specification built using the DSL) is the quality that makes it easy for

users to understand, learn, and interact with it (Langlois et al., 2007;

Barišic et al., 2011).

Recently, we observed some studies concerned with analyzing

the usability of DSLs from several point of views (Van Deursen

et al., 2000; Humm and Engelschall, 2010; Nishino, 2012). There

is, however, a lack of studies which rely on quantitative analysis to

complement the qualitative analysis of the DSLs usability. The cre-

ation of a metric suite to support the quantitative analysis of DSLs

would allow an objective comparison between DSLs (Barišic et al.,

2011; Sobernig et al., 2011; Gabriel et al., 2011), therefore com-

plementing the qualitative analysis approaches found in the litera-

ture (Rainer and Hall, 2003; Mernik et al., 2005; Prieto-Díaz, 1990;

Hudak, 1998). The results would be more reliable and provide extra

information at early design stages of a DSL than approaches without

any quantitative analysis. Moreover, such a metric suite would sup-

port the early evaluation of DSL usability in order to help choose the

most appropriate DSL given the nature of the software maintenance

tasks.

http://dx.doi.org/10.1016/j.jss.2014.11.051

0164-1212/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2014.11.051
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.11.051&domain=pdf
mailto:diego.l.albuquerque@gmail.com
mailto:pg19789@alunos.uminho.pt
mailto:bcafeo@inf.puc-rio.br
mailto:afgarcia@inf.puc-rio.br
mailto:simone@inf.puc-rio.br
mailto:simone@inf.puc-rio.br
mailto:anr@di.uminho.pt
http://dx.doi.org/10.1016/j.jss.2014.11.051


246 D. Albuquerque et al. / The Journal of Systems and Software 101 (2015) 245–259

Concerned with the aforementioned issues, we report a study

conducted to compare the usability of textual DSLs4 for detecting

architectural problems (Gurgel, 2012; Moha et al., 2010; Moha and

Guéhéneuc, 2007; Gurgel et al., 2014). In particular, we defined a

usability metrics suite that was developed based on the cognitive di-

mensions of notations (CDN) framework (Blackwell and Green, 2003).

We instantiated these cognitive dimensions for evaluating DSLs and

assessed them by a qualitative process. These instantiations of the

CDN capture usability aspects of DSL artifacts relevant to software

maintenance tasks. Data were collected from two DSLs (Gurgel, 2012;

Moha et al., 2010) for detecting architectural problems. The two cho-

sen DSLs explicitly embed constructs to define architectural design

rules so that they can be checked in the source code. In addition, both

DSLs were designed for different categories of stakeholders, including

software architects, programmers and code reviewers.

The remainder of this paper is organized as follows: Section 2

gives some background information needed to better understand the

scope of this paper. Section 3 describes the steps required to create the

metrics. Section 4 describes the design of a qualitative study aimed

at assessing the proposed instantiation of the cognitive dimensions.

Section 5 describes the metrics suite developed to analyze the us-

ability of DSLs. Section 6 describes the design of an exploratory study

aimed at comparing the two textual DSLs and assessing the useful-

ness of the proposed metrics. The results of the study are analyzed

and discussed in Section 7. Section 8 describes the threats to the valid-

ity of our study. Section 9 discusses related work. Finally, Section 10

concludes the work and suggests future developments.

2. Background

A DSL is a type of programming language or specification language

in software development dedicated to a particular problem or solu-

tion domain (Van Deursen et al., 2000; Humm and Engelschall, 2010;

Consel and Marlet, 1998). A DSL facilitates software development

through appropriate abstractions and notations. Several studies (Van

Deursen et al., 2000; Visser, 2008; Humm and Engelschall, 2010; Gray

and Karsai, 2003) identify various benefits of using DSLs in the area of

software engineering, including the provision of an idiom at the level

of abstraction of the problem domain. These studies also show how

the expressive power of DSLs is significant when they are properly

designed for one specific domain.

In our study, we selected the domain of architectural rules. In this

domain, DSLs are used by software architects, programmers and code

reviewers to specify and check the adherence of the source code with

respect to architectural rules. It is particularly challenging to design

a usable DSL in this domain for several reasons (Garcia et al., 2009;

Macia et al., 2012; Mitschke et al., 2013), including: (1) it needs to offer

a concise set of abstractions in order to enable architects to express

the high-level design rules, (2) it needs to be concise and expres-

sive enough in order to support programmers and code reviewers in

understanding which program elements are affected by the architec-

tural rules, and (3) it needs to be expressive enough to allow users to

tailor the architecture rules as they implement, maintain and evolve

modules of a program.

Thus, the next subsection briefly describes the framework used

for developing the usability metrics suite. This framework character-

izes important usability properties to be assessed in the design of

languages, such as DSLs (Section 2.1).

2.1. CDN framework

The CDN framework is “a set of discussion tools for use by de-

signers and people evaluating designs” (Blackwell and Green, 2003).

We chose this framework because we found that it is a widely used

4 From hereafter, we use the term “DSLs” to refer only to textual DSLs.

Table 1

Cognitive dimensions originally defined by CDN (Blackwell and Green, 2003,

pp. 116–118).

Cognitive dimension Description

Viscosity Resistance to change

Visibility Ability to view entities easily

Premature Commitment Constraints on the order of doing things

Hidden Dependencies Relevant relations between entities are not visible

Role-Expressiveness The purpose of an entity is readily inferred

Error-Proneness The notation invites mistakes and the system gives

little protection

Abstraction Types and availability of abstraction mechanisms

Secondary Notation Extra information in means other than formal syntax

Closeness of Mapping Closeness of representation to domain

Consistency Similar semantics are expressed in similar syntactic

forms

Diffuseness Verbosity of language

Hard Mental Operations High demand on cognitive resources

Provisionality Degree of commitment to actions or marks

Progressive Evaluation Work-to-date can be checked at any time

technique to support usability evaluation in the literature (Maia et al.,

2012; Neto et al., 2010; Green and Petre, 1996). This framework pro-

vides cognitive dimensions5 of general use in different domains, as

shown in Table 1. These CDs are conceptual tools defined to help the

designer or evaluator to reason about the system or language being

assessed (Maia et al., 2012; Blackwell and Green, 2003). In addition,

these CDs allow “to improve the exchange of experience, opinions,

criticism and suggestions” (Maia et al., 2012). This framework was

originally proposed to evaluate notational systems for designing ar-

tifacts, aiming “to improve the quality of discussion” (Blackwell and

Green, 2003, p. 107). These CDs cover a wide range of issues and,

consequently, their definitions may lead to different interpretations.

Previous work has employed this framework to qualitatively evaluate

the design of DSLs in different contexts (Maia et al., 2012; Neto et al.,

2010).

However, to the best of our knowledge, no previous study has de-

fined a CDN-based metrics suite to support a quantitative evaluation

of DSLs. We selected a subset of the CDs to support the evaluation

of DSLs in evolving systems (Section 3). According to the literature,

DSLs comprise four important aspects: expressiveness, conciseness,

integration, and performance (Humm and Engelschall, 2010). How-

ever, only the first two characteristics are considered in this paper,

since they are important in terms of the language itself. In other

words, we aim to evaluate the specifications that the user–developer

needs to understand and/or produce and not the interaction of the

language with some tool. These two characteristics are defined as: (1)

DSL expressiveness, which refers to the extent a domain-specific lan-

guage allows to directly represent the elements of a domain, and (2) DSL

conciseness, which refers to the economy of terms without harming the

artifact comprehension.

2.2. DSLs for detecting architectural problems

Nowadays there are currently hundreds of DSLs, in a wide range

of domains in the context of software systems, engineering, and

telecommunications, among others (Van Deursen et al., 2000). In

particular, there are several DSLs in software engineering particu-

larly intended to support developers in specifying design rules at

different levels of abstraction (e.g. Gurgel, 2012; Silva Filho et al.,

2011; Moha et al., 2010; Terra and Valente, 2009; Ubayashi et al.,

2010; Morgan et al., 2007). For instance, some DSLs are intended

to support programmers in defining low-level design rules that are

relevant at the implementation level (e.g. Silva Filho et al., 2011;

Morgan et al., 2007). As mentioned in Section 2, we chose to apply

5 From hereafter, we use the term “CDs” to refer cognitive dimensions.



Download English Version:

https://daneshyari.com/en/article/6885688

Download Persian Version:

https://daneshyari.com/article/6885688

Daneshyari.com

https://daneshyari.com/en/article/6885688
https://daneshyari.com/article/6885688
https://daneshyari.com

