
Please cite this article in press as: Sun, X., et al., Change impact analysis and changeability assessment for a change proposal: An empirical
study ��. J. Syst. Software (2014), http://dx.doi.org/10.1016/j.jss.2014.05.036

ARTICLE IN PRESSG Model
JSS-9336; No. of Pages 10

The Journal of Systems and Software xxx (2014) xxx–xxx

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

Change impact analysis and changeability assessment for a change
proposal: An empirical study ���,��

Xiaobing Suna,d,∗, Hareton Leungc, Bin Lia,d, Bixin Lib

a School of Information Engineering, Yangzhou University, Yangzhou, China
b School of Computer Science and Engineering, Southeast University, Nanjing, China
c Department of Computing, Hong Kong Polytechnic University, Hong Kong, China
d State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

a r t i c l e i n f o

Article history:
Received 25 August 2013
Received in revised form 8 April 2014
Accepted 15 May 2014
Available online xxx

Keywords:
Change impact analysis
Changeability assessment
Empirical study

a b s t r a c t

Software change is a fundamental ingredient of software maintenance and evolution. Effectively support-
ing software modification is essential to provide a reliable high-quality evolution of software systems, as
even a slight change may cause some unpredictable and undesirable effects on other parts of the software.
To address this issue, this work used change impact analysis (CIA) to guide software modification. CIA
can be used to help make correct decision on the change proposal, that is changeability assessment, and
to implement effective changes for a change proposal. In this article, we conducted an empirical study on
three Java open-source systems to show how CIA can be used during software modification. The results
indicate that: (1) assessing changeability of a change proposal based on the impact results of the CIA is
not accurate from the precision perspective; (2) the proposed impactness metric is an effective indicator
of changeability assessment for the change proposal; and (3) CIA can make the change implementation
process more efficient and easier.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Software change is a fundamental ingredient of software
maintenance and evolution. Effectively supporting software mod-
ification is essential to provide a reliable high-quality evolution of
software systems, as even a slight change may cause some unpre-
dictable and undesirable effects on other parts of the system. One
of the most critical issues of the software maintenance process is to
predict the impact of a change proposal (Schneidewind, 1987; Nesi,
1998; Kemerer and Slaughter, 1999; Fioravanti and Nesi, 2001;

� A preliminary edition of this article was accepted by COMPSAC 2012 as a short
research track paper. This work extends and provides wider experimental evidence
of the proposed method.
�� This work is supported partially by the Natural Science Foundation of the

Jiangsu Higher Education Institutions of China under Grant No. 13KJB520027, par-
tially by the Open Funds of State Key Laboratory for Novel Software Technology of
Nanjing University under Grant No. KFKT2014B13, partially by the Program for New
Century Excellent Talents of Yangzhou University, and partially by the Cultivating
Fund for Science and Technology Innovation of Yangzhou University under Grant
No. 2013CXJ025.

∗ Corresponding author. Tel.: +86 18252740912.
E-mail addresses: xbsun@yzu.edu.cn, sundomore@163.com (X. Sun),

hareton.leung@polyu.edu.hk (H. Leung), lb@yzu.edu.cn (B. Li), bx.li@seu.edu.cn
(B. Li).

Lucia et al., 2002). In order to deal with a change proposal, some
predictive measurement of its change ripples should be conducted.
There have been a large amount of research work on the mea-
surement and metrics for software development (Chidamber and
Kemerer, 1994; Briand et al., 1999b; Gopal et al., 2002; Olague
et al., 2007; Habra et al., 2008), but only a few on software
maintenance (Bandi et al., 2003; Schneidewind, 2000). Accurate
measurement is a prerequisite for all engineering disciplines, and
software maintenance is no exception. Given a change proposal,
software maintenance must address three problems: to make a
preliminary estimation of the ripple effects affected by the modifi-
cation, to determine whether to accept, reject, or further evaluate
this given change proposal, and to implement changes according
to the change proposal.

In this article, we integrate change impact analysis (CIA) and
changeability assessment to perform a predictive measurement for
the proposed change proposal. CIA, often simply called impact anal-
ysis, is an approach used to identify the potential effects caused by
changes made to software (Bohner and Arnold, 1996). CIA starts
with a set of proposed changed elements in a software system,
called the change set, and attempts to determine a possibly larger
set of elements, called the impact set, that requires attention or
maintenance effort (Bohner and Arnold, 1996). The impact set
can facilitate the change implementation process (Li et al., 2012).

http://dx.doi.org/10.1016/j.jss.2014.05.036
0164-1212/© 2014 Elsevier Inc. All rights reserved.

dx.doi.org/10.1016/j.jss.2014.05.036
dx.doi.org/10.1016/j.jss.2014.05.036
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:xbsun@yzu.edu.cn
mailto:sundomore@163.com
mailto:hareton.leung@polyu.edu.hk
mailto:lb@yzu.edu.cn
mailto:bx.li@seu.edu.cn
dx.doi.org/10.1016/j.jss.2014.05.036

Please cite this article in press as: Sun, X., et al., Change impact analysis and changeability assessment for a change proposal: An empirical
study ��. J. Syst. Software (2014), http://dx.doi.org/10.1016/j.jss.2014.05.036

ARTICLE IN PRESSG Model
JSS-9336; No. of Pages 10

2 X. Sun et al. / The Journal of Systems and Software xxx (2014) xxx–xxx

Specifically, maintainers can check the elements in the impact set
to see whether they need further consideration. However, a criti-
cal threat to CIA is the accuracy of its impact set, i.e., the impact set
may have some false-positives (a.k.a., the elements in the estimated
impact set are not really impacted) and false-negatives (a.k.a.,some
of the real impacted elements are not identified) (Li et al., 2012).
Our work computes a ranked list of potentially impacted ele-
ments, which helps maintainers to estimate the probability of the
impacted methods to be false-positives. Moreover, our work can
remove the possibility of the false-negatives by choosing an appro-
priate impact set. Such impact results provide an eclectic approach
for CIA. In addition, changeability assessment evaluates the ease to
implement a change proposal (Board, in press). Based on change-
ability assessment, we can make a decision on the change proposal
before actual change implementation. There has been some work
that used CIA to assess the changeability of the proposed change
proposal (Chaumun et al., 1999). As the impact set computed by
CIA is often inaccurate, the computed changeability of the proposed
change proposal is also not accurate (Sun et al., 2012).

The focus of this study is on CIA and changeability assessment
for the code-level change proposal. As class is the basic element
in object oriented programming environment, one of the most
popular development environment, we assume that the change
proposal is composed of a set of proposed changed classes. Given
the class-level change proposal, we use FCA–CIA (Formal Concept
Analysis–Change Impact Analysis) to calculate a ranked list of the
potential impact set from these proposed changed classes since
FCA–CIA has shown to be effective to compute the change effects
(Sun et al., 2012; Li et al., 2013). FCA–CIA is a cross-level CIA, which
starts from proposed class-level changes and produces a ranked list
of potentially impacted methods. The potential impacted methods
are ranked according to an impact factor metric which corresponds
to the priority of these methods to be inspected. Then, we use
an impactness metric based on the results of FCA–CIA to indicate
the changeability of this change proposal. The impactness metric
measures the degree the proposed change proposal may affect the
original system. Finally, we use the impact results from FCA–CIA
to facilitate change implementation according to the proposed
change proposal. FCA–CIA have been evaluated in our previous
work (Li et al., 2013). However, the following issues have not been
addressed:

• Can CIA be directly used for changeability assessment?
• How to use CIA for changeability assessment and change imple-

mentation?

To answer these two questions, we conducted some empirical
studies based on three open source systems. The main contribu-
tions of this article are threefold as follows:

• Our study shows that the impact results produced by CIA are inac-
curate for changeability assessment. This implies that some other
metrics should be developed for changeability assessment.

• The empirical studies show that the proposed impactness metric
based on CIA is effective for changeability assessment, which can
help users make correct decision on accepting or rejecting the
change proposal.

• Based on a user study involving 16 students to fix four bugs in the
jEdit subject program, from the results of time performance and
the users’ perception, it appears that CIA can make the change
implementation process more efficient and effective. To the best
of our knowledge, there is no other such evaluation in the litera-
ture.

The rest of the article is organized as follows. In the next sec-
tion, we discuss the background to support CIA and changeability

Table 1
Formal context.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

C1 × × × × ×
C2 × × × × × × ×
C3 × × × ×
C4 × ×
C5 × × × × ×
C6 × × × ×

assessment. Section 3 presents our work of CIA and changeability
assessment for software modification. We conduct some empirical
studies to validate the effectiveness of our approach in Section 4. In
Section 5, some related work in the field of CIA and changeability
assessment is introduced. Finally, we present our conclusion and
future work in Section 6.

2. Background

FCA–CIA is performed based on concept lattice. In this section,
we introduce the background of concept lattice. Concept lattice,
also called formal concept analysis (FCA), is a field of applying math-
ematics to study the relation between entities and entity properties
to infer a hierarchy of concepts (Ganter and Wille, 1986). For every
binary relation between entities and their properties, a lattice can
be constructed to provide insight into the structure of the origi-
nal relation (Ganter and Wille, 1986). It has been shown that FCA
is a powerful code analysis technique for software maintenance in
the last few years (Snelting and Tip, 2000; Tilley et al., 2005). More
details of FCA can be referred to Ganter and Wille (1986).

Typically, FCA follows three steps: (1) a formal context with for-
mal object and formal attribute is provided; (2) concept lattice is
generated by applying concept lattice construction algorithm to the
formal context obtained from Step (1) (Ganter and Wille, 1986).
(3) Analysis (for example, CIA and refactoring (Snelting and Tip,
2000; Tilley et al., 2005)) is conducted based on the properties (for
example, hierarchical property) of the concept lattice.

A formal context can be easily represented by a relation table. In
the relation table, rows are headed by classes and columns headed
by methods. A cross in row o and column a means that the formal
object o (corresponding to class c) has formal attribute a (corre-
sponding to method m), in other words, class c depends on method
m, defined as follows:

Definition 1 (Dependence between class and method). Given that a
class c and a method m in a program, class c depends on method m,
if and only if, at least one of the following conditions is satisfied:

1 m belongs to c;
2 m belongs to any superclass of c;
3 c depends on another method k calling m;
4 c depends on another method k called by m.

Table 1 shows the relation table between classes and methods
for the Java program shown in Fig. 1. Such a table forms the formal
context to be analyzed. Applying FCA technique to the formal con-
text in Table 1, a set of formal concepts can be generated, which
is composed of sets of classes sharing sets of methods as shown in
Fig. 2. Formal concept is defined as a pair consisting of a set of for-
mal objects (called the extent) and a set of formal attributes (called
the intent) such that the extent consists of all formal objects that
depend on the given formal attributes, and the intent consists of
all formal attributes depended on by the given formal objects. The
graphical representation of concept lattice uses the simple label-
ing approach to represent the formal concepts in a more compact
and readable form (Ganter and Wille, 1986). This representation

dx.doi.org/10.1016/j.jss.2014.05.036

Download	English	Version:

https://daneshyari.com/en/article/6885695

Download	Persian	Version:

https://daneshyari.com/article/6885695

Daneshyari.com

https://daneshyari.com/en/article/6885695
https://daneshyari.com/article/6885695
https://daneshyari.com/

