
The Journal of Systems and Software 96 (2014) 139–151

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

Memory leak detection in Java: Taxonomy and classification
of approaches

Vladimir Šora,b,∗, Satish Narayana Sriramac

a Plumbr OÜ, Ülikooli 2, Tartu, Estonia
b Software Technology and Applications Competence Center, Ülikooli 2, Tartu, Estonia
c University of Tartu, Institute of Computer Science, Liivi 2,Tartu, Estonia

a r t i c l e i n f o

Article history:
Received 3 December 2013
Received in revised form 2 June 2014
Accepted 3 June 2014
Available online 11 June 2014

Keywords:
Java
Memory leak detection
Garbage collection

a b s t r a c t

Memory leaks are usually not associated with runtime environments with automatic garbage collection;
however, memory leaks do happen in such environments and present a challenge to detect and find a root
cause. Currently in the industry manual heap dump analysis is the most popular way of finding memory
leaks, regardless of the number of automated methods proposed by scientists over the years. However,
heap dump analysis alone cannot answer all questions needed to fix the leak effectively. The current
paper reviews memory leak detection approaches proposed over the years and classifies them from the
point of view of assessed metrics, performance overhead and intrusiveness. In addition, we classify the
methods into online, offline and hybrid groups based on their features.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

There used to be two major potential sources of bugs associ-
ated with manual memory management: dangling pointers and
memory leaks. While garbage collection completely solves the
problem of dangling pointers, the problem of memory leaks is
solved only partially, as garbage collector cannot reclaim objects
which are still referenced while being unused. Unused references
mean that some object (or object subgraph) is not needed for the
application anymore, but there is a reference somewhere, which
prevents the object from being garbage collected. In languages
with manual memory management, static source code analysis
can be used to check whether an allocated block of memory was
freed later on; however, in the garbage collected environment,
like Java virtual machine, memory leaks are part of software aging
and require either runtime analysis or heap dump analysis. Most
troublesome memory leaks are so-called slow leaks, which accu-
mulate over time and allow the program to run for a long time
before java.lang.OutOfMemoryError is thrown and the applica-
tion crashes. The problem with diagnosing such slow leaks is that
they need time to accumulate, thus making their reproduction very
hard. Slow leaks can be caused by some rarely used function, some

∗ Corresponding author at: Plumbr OÜ, Ülikooli 2, Tartu, Estonia.
Tel.: +372 53401651.

E-mail address: volli@ut.ee (V. Šor).

non-trivial sequence of user actions is performed or the data in the
production system (much richer than data in Q/A or development
environments) creates a combination causing the leak. In any case
it is very hard to find the actual sequence of actions to simulate the
leak in the development environment. Thus, a tool, which can be
used in production environments to track down leaks that cannot
be reproduced in development, is more valuable.

Heap dump analysis is an effective way to analyze the heap and
reveal what is keeping the objects from being garbage collected, but
it misses some important features. For example, heap dumps do not
contain any temporal information about when a particular object
was created, nor they contain information about an allocation site,
or where an object was created. Heap dumps will be described in
more detail in Section 4.

Several studies have addressed the online memory leak detec-
tion problem. Some of them focus at online analysis of either
growth (Chen and Chen, 2007; Jump and McKinley, 2007, 2006;
Šor and Srirama, 2011; Šor et al., 2011) or staleness detection (e.g.,
Bond and McKinley, 2006; Rayside et al., 2006; Rayside and Mendel,
2007; Xu and Rountev, 2008, 2013) and others on offline analysis
by either automatically performing dump analysis (Mitchell and
Sevitsky, 2003; Maxwell et al., 2010) or doing visualization (De
Pauw and Sevitsky, 1999; Reiss, 2009) of the heap dump to simplify
the leak detection task for the programmer.

However, we discovered that approaches that provide good
insight and analysis of the leak are implemented as a modification
of the JVM or garbage collector, which is too intrusive for actual

http://dx.doi.org/10.1016/j.jss.2014.06.005
0164-1212/© 2014 Elsevier Inc. All rights reserved.

dx.doi.org/10.1016/j.jss.2014.06.005
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.06.005&domain=pdf
mailto:volli@ut.ee
dx.doi.org/10.1016/j.jss.2014.06.005

140 V. Šor, S.N. Srirama / The Journal of Systems and Software 96 (2014) 139–151

use. Analysis of such solutions presented so far show little adop-
tion outside the research community. Tools which can be simply
attached to an application either give too much performance over-
head to be used anywhere besides the development environment
or the application has to be annotated for the tool to work or only
some specific types of memory leaks are handled. Looking back over
more than ten years of research shows that JVM vendors have not
adopted any of the proposed solutions. The details are provided in
the following sections.

The current publication is organized as follows. The classifica-
tion of memory leak detection techniques is provided in Section 2.1,
along with a review of the most commonly used terminology in the
field for clarity. In Section 3 we describe methods focusing on online
detection, further separating methods measuring object staleness,
size growth and self-healing methods. In Section 4 offline methods
are reviewed, including methods performing analysis of heap or
reference dumps. Visualization methods are also reviewed in Sec-
tion 4. The remaining methods that do not fall into any other group
are reviewed in Section 5. Sections 6 and 6.3 cover aspects such as
performance overhead, leak detection performance and intrusive-
ness, respectively. In Section 6.4 we discuss the observed qualities
of the methods and see which tradeoffs have to be made while
selecting one or another method for practical use. The paper is
concluded with Section 7.

2. Memory leak detection techniques: classification and
terminology

After first appearing in 1995, Java programming language, and
most importantly Java Virtual Machine (JVM), made enormous
progress. According to the TIOBE Programming Community Index
(Tiobe Software BV, 2013) Java was the most popular programming
language since the beginning of year 2000, with the exception of
years 2005 and 2013, where C took over. Java progressed not only as
a language but most importantly as a cross-platform runtime envi-
ronment with garbage collection. In recent years we can observe an
increase in popularity of languages such as Scala, Clojure, Groovy,
etc., which utilize Java Virtual Machine and its bytecode to produce
platform-independent applications.

An online search for the terms “memory leak java” or “Out-
OfMemoryError” finds thousands of blog posts, forum, and mailing
list discussions, which means that memory leaks in JVM languages
are not just a theoretical problem. Memory leak detection has been
studied over the years and several solutions have been proposed;
however, practically none of them have reached the industry. In
this work we review memory leak approaches considering their
implementation complexity, measured metrics, and intrusiveness.
As a result, we propose classification of memory leak detection from
analyzed standpoints.

The state-of-the-art approaches can be classified as methods
implementing:

1. Online detection, further separating methods into
(a) measuring staleness and
(b) detecting growth.

2. Offline detection, including methods:
(a) analyzing heap dumps and other kinds of captured state,
(b) using visualization to aid manual leak detection, and
(c) static analysis of the source code.

3. Hybrid methods, combining features from both online and
offline approaches.

Before proceeding further with the classification, following sub-
section briefly describes the most commonly used terminology in

the field, which is necessary to understand the classification and
the following discussion.

2.1. Terminology

Garbage collection roots – special references which are directly
accessible by the application threads and the garbage collector.
Roots include references and variables on stack, static variables,
threads, and Java Native Interface (JNI) references (reference from
the native code to a Java object). It is hereafter, it is referred to as
GC root.

Strong reference – a reference from one object to another via
direct field or variable reference.

Weak/soft reference – a reference from one object to
another made by using proxy objects of type java.lang.ref.
WeakReference, or java.lang.ref.SoftReference. These ref-
erence classes are of special meaning to the garbage collector. If an
object is reachable only via weak reference object then the object is
called weakly reachable. If an object is reachable only via a soft refer-
ence then the object is called softly reachable. If an object is weakly
reachable, then it is eligible for finalization (a special method to
be called before the object can be disposed) and garbage collection,
and thus will be reclaimed. The reference object will be notified that
the object it was referring was collected. If an object is softly reach-
able, then the garbage collector can choose not to collect the object
as soon it becomes softly reachable but it can leave the object on
the heap until memory pressure arises. Softly reachable objects are
guaranteed to be collected before java.lang.OutOfMemoryError
will be thrown (see Oracle Corp., 2013).

Reachability, reachable object – an object is called reachable when
there exists a path to it from a GC root. An object is strongly reach-
able if it can be reached from the GC roots via strong references only
(without traversing any reference objects). If an object is strongly
reachable, it cannot be garbage collected.

Mark-sweep garbage collection – the garbage collection algo-
rithm, modifications of which are used in modern JVMs. On a very
high level, the algorithm works in two steps. Starting from special
references, called garbage collection roots, traversing all objects
that can be reached by traversing intermediate references. Dur-
ing this traversal, objects are marked as reachable. The next step
removes all unmarked objects from the heap, as they cannot be
reached, and thus are unused. The main benefit of the method is
that it can also handle circular references between objects. Depend-
ing on which priorities are set for the garbage collector (throughput
or latency), different optimizations are applied to the basic mark-
sweep algorithm (concurrent mark-sweep, parallel mark-sweep,
mark-sweep-compact, etc.).

The liveness of the object is defined as an object being actively
used in addition to being just reachable, i.e., if reachability is a prop-
erty, which prevents the garbage collector from freeing the object,
then liveness of the object shows whether the object is still needed
for the application. Liveness can be measured only during runtime
and is not available, for example, in a heap dump.

Staleness of the object indicates whether an object has not been
used for a while. It is not a quantifiable measure, and the longer
an object is not used, the more stale it becomes. Staleness of an
object is a good indicator of an unused object; however, it can be
expensive to calculate and obtain. Staleness can be measured only
during runtime and is not available, for example, in a heap dump.

Dangling pointer/reference – in programming languages with
manual memory management a dangling pointer emerges when
the object, to which the pointer was pointing is freed, but the
pointer itself is not nullified. Thanks to garbage collection dangling
pointers do not occur in managed languages; however, the term is
often encountered in respective literature.

Download English Version:

https://daneshyari.com/en/article/6885702

Download Persian Version:

https://daneshyari.com/article/6885702

Daneshyari.com

https://daneshyari.com/en/article/6885702
https://daneshyari.com/article/6885702
https://daneshyari.com

