
The Journal of Systems and Software 90 (2014) 18–28

Contents lists available at ScienceDirect

The Journal of Systems and Software

j our na l ho me page: www.elsev ier .com/ locate / j ss

A dynamic code coverage approach to maximize fault
localization efficiency

Alexandre Perez ∗, Rui Abreu, André Riboira
Department of Informatics Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

a r t i c l e i n f o

Article history:
Received 31 January 2013
Received in revised form 9 December 2013
Accepted 16 December 2013
Available online 4 January 2014

Keywords:
Dynamic coverage
Software diagnosis
Spectrum-based fault localization

a b s t r a c t

Spectrum-based fault localization is amongst the most effective techniques for automatic fault localiza-
tion. However, abstractions of program execution traces, one of the required inputs for this technique,
require instrumentation of the software under test at a statement level of granularity in order to com-
pute a list of potential faulty statements. This introduces a considerable overhead in the fault localization
process, which can even become prohibitive in, e.g., resource constrained environments. To counter this
problem, we propose a new approach, coined dynamic code coverage (DCC), aimed at reducing this
instrumentation overhead. This technique, by means of using coarser instrumentation, starts by analyz-
ing coverage traces for large components of the system under test. It then progressively increases the
instrumentation detail for faulty components, until the statement level of detail is reached. To assess
the validity of our proposed approach, an empirical evaluation was performed, injecting faults in six
real-world software projects. The empirical evaluation demonstrates that the dynamic code coverage
approach reduces the execution overhead that exists in spectrum-based fault localization, and even
presents a more concise potential fault ranking to the user. We have observed execution time reductions
of 27% on average and diagnostic report size reductions of 77% on average.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Automatic fault localization techniques aid developers/testers
to pinpoint the root cause of failures, thereby reducing the debug-
ging effort. Amongst the most diagnostic effective techniques is
spectrum-based fault localization (SFL). SFL is a statistical tech-
nique that uses abstraction of program traces (also known as
program spectra) to correlate software component (e.g., state-
ments, methods, and classes) activity with program failures (Abreu
et al., 2009c; Liu et al., 2006; Wong et al., 2008). As SFL is typically
used to aid developers in identifying the root cause of observed fail-
ures, it is used with low-level of granularity (i.e., statement level).

Statistical approaches are very attractive due to the relatively
small overhead with respect to CPU time and memory requirement
(Abreu et al., 2009b,c). However, gathering the input information,
per test case, to compute the diagnostic ranking may still impose a
considerable (CPU time) overhead. This is particularly the case for
resource constrained environments. The effort required to inspect
SFL’s diagnostic report is also noteworthy.

As said before, typically, SFL is used at development-time at a
statement level granularity (since debugging requires to locate the

∗ Corresponding author. Tel.: +351 960002243.
E-mail addresses: alexandre.perez@fe.up.pt (A. Perez), rui@computer.org

(R. Abreu), andre.riboira@fe.up.pt (A. Riboira).

faulty statement). But not all components need to be inspected at
such detailed granularity. In fact, components that are unlikely to
be faulty do not need to be inspected. With this reasoning in mind,
we propose a technique, coined dynamic code coverage (DCC), that
automatically adjusts the granularity per component. First, our
approach instruments the source code using a coarse granularity
(e.g., package level in Java), and then decides which components to
expand based on the output of the fault localization technique. With
expanding we mean changing the granularity of the instrumenta-
tion (e.g., in Java, for instance, instrument classes, then methods,
and finally statements). This expansion can be done in different
ways, for instance, by selecting the top ranked components, accord-
ing to a set percentage.

Our empirical evaluation demonstrates that DCC has the
potential to drastically reduce the execution overhead, while
still maintaining the diagnostic effectiveness of statement-based
spectrum-based fault localization. In our experiments, we have
observed a time reduction of 27% on average. Furthermore, a
77% reduction of the diagnostic report size was observed in our
empirical evaluation, lessening the effort required by developers
to perform an inspection.

In particular, this paper makes the following contributions:

• We propose DCC, a technique that automatically decides the
instrumentation granularity per module in the system.

0164-1212/$ – see front matter © 2014 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2013.12.036

dx.doi.org/10.1016/j.jss.2013.12.036
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2013.12.036&domain=pdf
mailto:alexandre.perez@fe.up.pt
mailto:rui@computer.org
mailto:andre.riboira@fe.up.pt
dx.doi.org/10.1016/j.jss.2013.12.036

A. Perez et al. / The Journal of Systems and Software 90 (2014) 18–28 19

• We provide an implementation of the DCC approach within the
GZoltar (Campos et al., 2012) testing framework.
• An empirical study to validate the proposed technique, demon-

strating its efficacy and efficiency using real-world, large
programs. The empirical results show that DCC can indeed
decrease the overhead imposed in the software under test,
while still maintaining the same diagnostic accuracy as current
approaches to fault localization. DCC also decreases the diagnos-
tic report size when compared to traditional SFL.

This work builds on top of previous work (Perez et al., 2012),
where we proposed a lightweight topology-based model to esti-
mate the diagnostic efficiency of fault localization techniques,
extending it as follows. First we provide a motivation for a hierar-
chical approach to fault localization. Second, we detail our proposed
technique, coined DCC. Finally, we provide an empirical evaluation
of the efficacy and efficiency of both DCC and our topology-based
analysis model by injecting single and multiple faults into real-
world, large applications.

The remainder of this paper is organized as follows. In Section
2 we present concepts relevant to this paper as well as a motiva-
tional example for our work. In Section 3 the dynamic code coverage
approach, DCC, is described. In Section 4, a topology-based analysis
to assess whether to use spectrum-based fault localization (SFL) or
DCC is detailed. In Section 5 the findings of our empirical evaluation
are presented. We compare DCC with related work in Section 6. In
Section 7 we conclude and discuss future work.

2. Concepts and motivational example

In this section, we introduce the concept of program spectra,
and its use in fault localization. Throughout this paper, we use the
following terminology (Avižienis et al., 2004):

• A failure is an event that occurs when delivered service deviates
from correct service.
• An error is a system state that may cause a failure.
• A fault (defect/bug) is the cause of an error in the system.

In this paper, we apply this terminology to software programs,
where faults are bugs in the program code. Failures and errors are
symptoms caused by faults in the program. The purpose of fault
localization is to pinpoint the root cause of observed symptoms.

Definition 1. A software program � is formed by a sequence M
of one or more statements.

Given its dynamic nature, central to the fault localization tech-
nique considered in this paper is the existence of a test suite.

Definition 2. A test suite T = {t1, . . ., tN} is a collection of test cases
that are intended to test whether the program follows the specified
set of requirements. The cardinality of T is the number of test cases
in the set |T| = N.

Definition 3. A test case t is a (i, o) tuple, where i is a collection
of input settings or variables for determining whether a software
system works as expected or not, and o is the expected output. If
�(i) = o the test case passes, otherwise fails.

2.1. Program spectra

A program spectrum is a characterization of a program’s execu-
tion on a dataset (Reps et al., 1997). This collection of data, gathered
at runtime, provides a view on the dynamic behavior of a program.
The data consists of counters or flags for each software compo-
nent. Various different program spectra exist (Harrold et al., 2000),

Fig. 1. Input to SFL.

such as path-hit spectra, data-dependence-hit spectra, and block-
hit spectra.

In order to obtain information about which components were
covered in each execution, the program’s source code needs to be
instrumented, similarly to code coverage tools (Yang et al., 2006).
This instrumentation will monitor each component and register
those that were executed. Components can be of several detail
granularities, such as classes, methods, and lines of code.

2.2. Fault localization

A fault localization technique that uses program spectra, called
SFL, exploits information from passed and failed system runs. A
passed run is a program execution that is completed correctly, and a
failed run is an execution where an error was detected (Abreu et al.,
2009c). The criteria for determining if a run has passed or failed can
be from a variety of different sources, namely test case results and
program assertions, among others. The information gathered from
these runs is their hit spectra (Abreu et al., 2009c).

The hit spectra of N runs constitutes a binary N × M matrix
A, where M corresponds to the instrumented components of the
program. Information of passed and failed runs is gathered in a N-
length vector e, called the error vector. The pair (A, e) serves as input
for the SFL technique, as seen in Fig. 1.

With this input, fault localization consists in identifying what
columns of the matrix A resemble the vector e the most. For that,
several different similarity coefficients can be used (Jain and Dubes,
1988). One of the most effective is the Ochiai coefficient (Abreu
et al., 2007), used in the molecular biology domain:

sO(j) = n11(j)√
(n11(j) + n01(j)) × (n11(j) + n10(j))

(1)

where npq(j) is the number of runs in which the component j has
been touched during execution (p = 1) or not touched during exe-
cution (p = 0), and where the runs failed (q = 1) or passed (q = 0).
For instance, n11(j) counts the number of times component j has
been involved in failed executions, whereas n10(j) counts the num-
ber of times component j has been involved in passed executions.
Formally, npq(j) is defined as

npq(j) = |{i | aij = p ∧ ei = q}| (2)

SFL can be used with program spectra of several different granu-
larities. However, it is most commonly used ad the line of code (LOC)
level and at the basic block level. Using coarser granularities would
be difficult for programmers to investigate if a given fault hypoth-
esis generated by SFL was, in fact, faulty. Throughout this work, we
will be using a LOC level as the instrumentation granularity for the
fault localization diagnosis report.

2.3. Motivational example

Suppose a program responsible for controlling a television set is
being debugged. Consider that such program has three main high-
level modules:

1. Audio and video processing.
2. Teletext decoding and navigation.

Download English Version:

https://daneshyari.com/en/article/6885710

Download Persian Version:

https://daneshyari.com/article/6885710

Daneshyari.com

https://daneshyari.com/en/article/6885710
https://daneshyari.com/article/6885710
https://daneshyari.com

