
The Journal of Systems and Software 90 (2014) 45–60

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

Combining mutation and fault localization for automated
program debugging

Vidroha Debroya, W. Eric Wongb,∗

a Microsoft, Redmond, WA, USA
b Department of Computer Science, University of Texas at Dallas, USA

a r t i c l e i n f o

Article history:
Received 5 February 2013
Received in revised form 17 October 2013
Accepted 18 October 2013
Available online 7 November 2013

Keywords:
Program debugging
Mutation
Fault localization
Fault-fixing
Software testing

a b s t r a c t

This paper proposes a strategy for automatically fixing faults in a program by combining the ideas of
mutation and fault localization. Statements ranked in order of their likelihood of containing faults are
mutated in the same order to produce potential fixes for the faulty program. The proposed strategy is
evaluated using 8 mutant operators against 19 programs each with multiple faulty versions. Our results
indicate that 20.70% of the faults are fixed using selected mutant operators, suggesting that the strategy
holds merit for automatically fixing faults. The impact of fault localization on efficiency of the overall fault-
fixing process is investigated by experimenting with two different techniques, Tarantula and Ochiai, the
latter of which has been reported to be better at fault localization than Tarantula, and also proves to be
better in the context of fault-fixing using our proposed strategy. Further experiments are also presented
to evaluate stopping criteria with respect to the mutant examination process and reveal that a significant
fraction of the (fixable) faults can be fixed by examining a small percentage of the program code. We
also report on the relative fault-fixing capabilities of mutant operators used and present discussions on
future work.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Much progress has been made in software development and
testing over the recent years. However, in spite of this, even soft-
ware that is of the highest quality may still contain faults; which in
turn may cause the software to fail. Debugging a program,1 when
failure is observed, is essentially a two-step process that consists
of first determining the location and nature of a suspected fault,
and then fixing the fault itself (Myers, 2011). While the debugging
process as a whole is extremely time-consuming and tedious, the
first step in particular, referred to as ‘fault localization’, has been
reported to be one of the most expensive of the program debug-
ging activities (Vessey, 1985). Even in an educational setting, based
on interactions with students, it has been reported that finding
faults in code is an extremely difficult task (Fitzgerald et al., 2010).
With this realization, several techniques have been proposed in
the recent past, which aim to reduce the manual effort spent by
developers/programmers to locate faults.

Broadly speaking, fault localization techniques can be classi-
fied as either static or dynamic. Static fault localization techniques

∗ Corresponding author. Tel.: +1 9728836619; fax: +1 9728832399.
E-mail addresses: vdebroy@microsoft.com (V. Debroy), ewong@utdallas.edu

(W.E. Wong).
1 In this paper the terms ‘software’ and ‘program’ are used interchangeably. Also

‘fault’ and ‘bug’ are used interchangeably.

essentially only make use of information that is derived from pro-
gram source code or one of its abstractions, whereas dynamic fault
localization techniques analyze abstractions of program execution
traces collected at runtime, and then contrast successful execu-
tions with those that have failed. The general idea is for a fault
localization technique to create a ranking of most probable faulty
components such that these components may then be examined
by programmers in order of their suspiciousness (likelihood of con-
taining faults) until a fault is found (Abreu et al., 2009; Cleve and
Zeller, 2005; Jones and Harrold, 2005; Liblit et al., 2005; Liu et al.,
2006; Renieris and Reiss, 2003; Wong et al., 2010, 2012b; Wong
and Qi, 2009; Zheng et al., 2006). A good technique should rank a
faulty component toward the top (if not at the very top) of its rank-
ing such that a fault is discovered early on in the examination of
the ranking.

However, even if a fault has been detected and located, the bur-
den of fixing the fault is still left solely to the programmers. This
paper focuses on addressing this issue and tries to take a step in the
direction of fixing faults automatically; the motivation being not
just that the manual fixing of faults is time-consuming and tedious,
but it is also error prone (Goel, 1985; Xie and Yang, 2003).

A common problem faced by fault localization studies is a lack
of suitable data sets on which to evaluate the effectiveness of
their techniques. It is often the case that even though subject pro-
grams are readily available; there are not enough faulty versions
of those programs to conduct a comprehensive analysis. Recently

0164-1212/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2013.10.042

dx.doi.org/10.1016/j.jss.2013.10.042
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2013.10.042&domain=pdf
mailto:vdebroy@microsoft.com
mailto:ewong@utdallas.edu
dx.doi.org/10.1016/j.jss.2013.10.042

46 V. Debroy, W.E. Wong / The Journal of Systems and Software 90 (2014) 45–60

researchers (not just in the area of fault localization) have relied
on mutation (which is to be described in detail subsequently) to
address this issue, where each mutant of a correct program repre-
sents a faulty version suitable for study. The rationale behind this
approach is that the mutants so generated can represent ‘realis-
tic faults’ and when used in experiments yield trustworthy results
(Andrews et al., 2005; Do and Rothermel, 2006; Liu et al., 2006;
Namin et al., 2006). However, this leads us to a very intriguing ques-
tion: if mutating a correct program can result in a realistic fault, can
mutating a faulty program result in a realistic fix for some faults?
Let us assume that it is possible. Then, we need to answer additional
questions. Are we to generate every mutant for the entire program?
Where do we start and how do we know when we have fixed the
fault? We provide useful guidance by combining this concept with
that of fault localization.

If a fault localization technique has already ranked program
components such as statements in order of how likely they are to
contain faults, these statements may then be mutated in the same
order until a possible fix (one of the mutants) is found. Also, under
the assumptions that the fault localization technique is of suffi-
cient quality and ranks a faulty statement as highly suspicious, and
the fault is fixable using the mutant operators2 applied; starting
from the most suspicious statement we would only need to gener-
ate and execute a fraction of the total number of possible mutants,
thereby reducing the overhead involved in the fault-fixing process
significantly. Furthermore, this can be done automatically without
the need for human intervention. Our previous study (Debroy and
Wong, 2010) has provided a good starting point showing how the
proposed strategy worked on a set of 8 programs using the Taran-
tula fault localization technique (Jones and Harrold, 2005). Based on
that, we further investigate the usefulness and viability of this idea
by virtue of case studies performed on multiple sets of 19 programs
and two fault localization techniques. More importantly, we also
discuss in depth various important aspects of the proposed idea and
present useful insights on its efficiency and general applicability.

The remainder of this paper is organized as follows: Section
2 presents some background information to help readers better
understand this paper followed by Section 3 which, via examples
and a visual outline, describes our proposed fault-fixing strategy in
detail. Section 4 reports on the case studies undertaken to eval-
uate the proposed strategy, while also including details on the
experimental design, environment, data collection, etc. Sections 5
and 6 present in-depth discussions (and experimental data) on the
importance of the fault localization technique, and the relevance
of the mutant operators, respectively. Subsequently, Section 7 dis-
cusses some special aspects of the proposed fault-fixing strategy;
presents a detailed discussion on how it might be extended; and
discusses the threats to validity. Related work is overviewed in
Section 8, and finally our conclusions appear in Section 9.

2. Preliminaries: mutation and fault localization

In order to better understand the work presented in this paper,
we provide some background knowledge on the two important
components of our proposed strategy. We first overview mutation,
and then, move on to discuss fault localization, by demonstrat-
ing the use of the Tarantula technique (Jones and Harrold, 2005).
Note that we discuss Tarantula in this section purely to illustrate
how fault localization works. Our study also includes the Ochiai
technique which is discussed in Section 5. Other fault localization
techniques can be easily applied in the same way.

2 The term “mutant operators” is also referred to as “mutation operators” in other
published literature.

2.1. Mutation: an overview

Mutation is typically used to assess the fault detection effective-
ness of a test set for a particular program, by introducing syntactic
code changes into a program, and then observing if the test set
is capable of detecting these changes (Budd, 1980; DeMillo et al.,
1978; Do and Rothermel, 2006; Wong and Mathur, 1995a).

First, a mutant operator (say m) is applied to a program P to gen-
erate a mutant P′. If P′ is different from P by exactly one change, then
P′ is a first-order mutant. Otherwise, P′ is a higher-order mutant if
there are at least two changes between P and P′. In this paper, we
only consider first-order mutants. It is likely that the application of
m to P shall not just lead to the generation of one such P′, but rather
several similar yet distinct mutants. If the program consists of more
than one location where m may be applied, then m is applied one
by one to each location, producing a distinct mutant each time.

Given a test set T, each mutant P′ can be executed against every
test case in T. If there exists a test case (say t) in T such that
P(t) /= P′(t) (i.e., the output or behavior of P′ on test case t is different
from that of P), then P′ is said to have been killed (or distinguished)
by t. In other words, the fault in P′ has been discovered by t, as P′

fails to produce the expected output. This is consistent with the
taxonomy in Avizienis et al. (2004) where a failure is defined as an
event that occurs when a delivered service deviates from the cor-
rect service. A mutant that is not killed by any of the test cases in T
is said to be live (with respect to T), i.e., the fault in this mutant is
not discovered.

It is important to note that a mutant P′ may be functionally
equivalent to the original program P and therefore, no test case
can kill it. Such mutants are called equivalent mutants. Thus, a live
mutant may not be killed by any test case in a test set T either
because it is an equivalent mutant or because the test set T is insuf-
ficient to kill the mutant. A mutation score can be assigned to a
test set which is the percentage of non-equivalent mutants killed
by test cases in this set. A test set is said to be mutation adequate
(with respect to a set of mutant operators and a program) if its
mutation score is 100%. Mutation can also be automated via tools
such as Proteum for C (Maldonado et al., 2000) and Mujava (Ma
et al., 2005) for Java, to name a few.

2.2. Fault localization: the Tarantula technique

For the purposes of this paper, we focus on dynamic fault local-
ization techniques that make use of information collected as a result
of test case executions against the program under test. More pre-
cisely, data on the execution result (success or failure) and the
coverage (which statements3 are covered/executed by each test
case and which are not) is utilized to assign a suspiciousness value
to each statement, which is interpreted as the likelihood of that
statement being faulty. Once the suspiciousness value for each
statement is computed, all the statements can then be sorted in
descending order from most suspicious to least suspicious to pro-
duce a ranked list that can be examined in order by programmers
for locating faults.

Tarantula is based on the intuition that entities in a program
that are primarily executed by failed test cases are more likely to
be faulty than those that are executed by successful (or passed) test
cases (Jones and Harrold, 2005). Tarantula also allows some toler-
ance for faults to be occasionally executed by successful test cases
and they find that this tolerance often provides for more effective

3 In this paper we consider ‘statements’ as the program components of interest
with the understanding that without loss of generality, fault localization techniques,
and the proposed fault-fixing strategy are equally applicable when considering other
program components such as functions, blocks (Agrawal et al., 1995), predicates, etc.

Download English Version:

https://daneshyari.com/en/article/6885712

Download Persian Version:

https://daneshyari.com/article/6885712

Daneshyari.com

https://daneshyari.com/en/article/6885712
https://daneshyari.com/article/6885712
https://daneshyari.com

