
The Journal of Systems and Software 90 (2014) 76–90

Contents lists available at ScienceDirect

The Journal of Systems and Software

j our na l ho me page: www.elsev ier .com/ locate / j ss

Distributed debugging for mobile networks

Elisa Gonzalez Boix ∗, Carlos Noguera, Wolfgang De Meuter
Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium

a r t i c l e i n f o

Article history:
Received 31 January 2013
Received in revised form 11 October 2013
Accepted 13 November 2013
Available online 4 December 2013

Keywords:
Distributed debugging
Distributed object-oriented applications
Mobile networks

a b s t r a c t

Debuggers are an integral part, albeit often neglected, of the development of distributed applications.
Ambient-oriented programming (AmOP) is a distributed paradigm for applications running on mobile
ad hoc networks. In AmOP the complexity of programming in a distributed setting is married with the
network fragility and open topology of mobile applications. To our knowledge, there is no debugging
approach that tackles both these issues. In this paper we argue that a novel kind of distributed debug-
ger that we term an ambient-oriented debugger, is required. We present REME-D (read as remedy), an
online ambient-oriented debugger that integrates techniques from distributed debugging (event-based
debugging, message breakpoints) and proposes facilities to deal with ad hoc, fragile networks – epidemic
debugging, and support for frequent disconnections.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Debugging software is an essential part of the development pro-
cess of any application. This task, which in sequential programs is
already difficult, is further complicated in a distributed environ-
ment (Cheung et al., 1990). When debugging a distributed program,
developers must deal with the inherent non-determinism of con-
current processes. This complicates the debugging task since an
error detected on a run might not manifest itself in the debugging
session. The lack of global clock and communication delays makes
impossible to determine whether a process is not making progress
as expected or has just failed. Furthermore, developing debugging
tools for distributed applications is difficult since the mere pres-
ence of the debugger might exacerbate this non-determinism by
affecting the way in which the program behaves. Computations
performed by the debugger may affect the order in which processes
are executed, making the reproduction of a rare erroneous condi-
tion even rarer. This condition akin to the Heisenberg Uncertainty
principle, is known as the probe effect (Gait, 1985; Mcdowell and
Helmbold, 1989).

In this paper, we focus on providing debugging support for
ambient-oriented applications: distributed applications running on
mobile ad hoc networks that are built on the ambient-oriented pro-
gramming paradigm (Van Cutsem et al., 2007). Ambient-oriented
programming (AmOP) extends the object-oriented paradigm with
a set of abstractions to deal with the hardware characteristics of
mobile ad hoc networks, namely, the fact that network disconnec-
tions are frequent, and devices can appear and disappear as the

∗ Corresponding author. Tel.: +32 2 6293581; fax: +32 2 6293525.
E-mail address: egonzale@vub.ac.be (E. Gonzalez Boix).

user moves about. A central principle in the AmOP paradigm is that
all distributed communication is non-blocking, i.e., asynchronous.
Ambient-oriented applications thus employ a concurrency model
without blocking communication primitives (e.g., the actor model
(Agha, 1986), event loop concurrency (Miller et al., 2005)).

In order to support the construction of ambient-oriented appli-
cations, the software development process itself has to become
more systematic. Software tools contribute to this task. This
has motivated research in integrated development environments
(IDEs) and other tools such as debuggers and profilers. Nowadays
developers typically edit, compile and debug their programs in a
single integrated environment. Distributed applications, in partic-
ular, ambient-oriented applications are not different in this regard.
However, the omnipresence of failures in mobile ad hoc networks
requires us to rethink the design and implementation of software
tools. This work therefore investigates tool support for MANET
applications in the form of a debugger that handles partial failures.
Since partial failures may percolate from the underlying distributed
system layers up to the graphical user interface of an applica-
tion, the need arises for managing partial failures up to the tool
level.

Distributed debugging techniques and the debuggers developed
to date have either been designed for parallel computing (e.g., p2d2
(Hood, 1996), TotalView (Gottbrath, 2009), Node Prism (Sistare
et al., 1994)), for grid computing (e.g., Net-Dbx (Neophytou et al.,
2013), and IC2D (Baude et al., 2001)), or for general-purpose dis-
tributed computing in fixed, stationary networks (e.g., Amoeba
(Elshoff, 1989), Causeway (Stanley et al., 2009), and Millipede
(Tribou and Pedersen, 2013)). None of these debuggers have been
explicitly designed for applications running on mobile networks.
They lack the necessary features to deal with the difficult task of
debugging distributed asynchronous applications which run on a

0164-1212/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2013.11.1099

dx.doi.org/10.1016/j.jss.2013.11.1099
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2013.11.1099&domain=pdf
mailto:egonzale@vub.ac.be
dx.doi.org/10.1016/j.jss.2013.11.1099

E. Gonzalez Boix et al. / The Journal of Systems and Software 90 (2014) 76–90 77

radically different network topology, in particular, to deal with the
effects of partial failures. After all, debugging requires a thorough
understanding of the application being debugged, as well as the
programming model on which it is built. Because of this, we claim
that a new kind of debugger is required specifically for ambient-
oriented applications.

In this paper, we present an ambient-oriented debugger: a
distributed debugger that must support the characteristics of
AmOP (non-blocking, distributed communication and inherent
concurrency) while catering for the constraints of the ambient
environment (frequent disconnections, mobile participants), and
managing the intrinsic difficulties of writing a debugger such
as the probe effect. We then introduce REME-D – for Reflec-
tive, Epidemic MEssage-oriented Debugger, an implementation of
this idea in AmbientTalk (Van Cutsem et al., 2007) (a distributed
object-oriented language designed for mobile ad hoc networks).
REME-D is a breakpoint-based debugger that adapts the notions
of sequential debugging, such as step-by-step execution and state
introspection, to ambient-oriented debugging. REME-D combines
these features from sequential debuggers with a message-oriented
architecture based on event-driven debuggers (Hood, 1996; Netzer
and Miller, 1992; Fonseca et al., 2013; Stanley et al., 2009;
Wismüller, 1997); resulting in a simple, familiar but powerful
debugging toolbox. In order to deal with the dynamic nature of the
debugging session, in REME-D encountered devices are “infected”
with the debugging session, thus terming REME-D an epidemic
debugger.

The rest of this paper is structured as follows. Section 2 illus-
trates the difficulties ambient-oriented applications by means
of a running example and identify the challenges in ambi-
ent oriented debugging. Section 3 sketches the requirements for
ambient-oriented debuggers and proposes a reference architecture.
These requirements are realized in REME-D, our proof-of-concept
ambient-oriented debugger for AmbientTalk presented in Sec-
tion 4. Relevant aspects of the implementation of REME-D are
presented in Section 5. In order to obtain a first assessment of the
utility our debugger we conducted a user-study discussed in Sec-
tion 6. After discussing related work, Section 8 presents a summary
of the paper and discussion on our approach.

2. Motivation

Before describing the features of an ambient-oriented debugger,
we highlight the need for such a technique by discussing the chal-
lenges of debugging MANET applications. To this end, we use an
application scenario that we will also use as the running example
throughout this paper.

2.1. Running example: the mobile shopping application

Consider an adaptation of the scenario of the shopping appli-
cation found in Stanley et al. (2009) that runs on mobile
devices. When the user checks out the shopping cart, the
application implements a protocol for handling purchase orders
similarly to well-known shopping websites such as amazon.com.
Before the shop can acknowledge an order, it must verify three
things: (1) whether the requested items are still in stock, (2)
whether the customer has provided valid payment information
and (3) whether a shipper is available to ship the order in
time.

Fig. 1 gives a graphical overview of the checkout protocol (veri-
fying the aforementioned requirements) modeled via a distributed
object-oriented system where communication between devices is
asynchronous. For simplicity, we use explicit callback objects to
return the result of an asynchronous computation. When the user

check outs the shopping cart in the shopping application UI, the
checkoutCart message of the service object on the user’s smart-
phone is sent which in turn sends go to the user’s session object
created in the buyer process at the shop. In response to a go
message, the buyer sends out three messages to the inventory,
the credit bureau, and the shipper services called partInStock,
checkCredit and canDeliver.

The teller object is created and passed as an argument in
each of the above mentioned messages, serving as a callback object
to collect the answer of the three services. A teller actually is an
abstraction implementing an asynchronous adaptation of the log-
ical and operator. It is initialized with a number indicating how
many affirmative replies it should receive, and the callback object
to notify. In this example, the teller is initialized to 3 replies, and the
callback object to notify is the session object residing at the buyer.
Once the teller receives the three expected replies, it sends back to
the session object a run(true) message if all received replies were
true; otherwise, run(false). The buyer then places the order only
if all the requirements become satisfied. Once the order has been
placed, the buyer contacts a warranty broker to propose a warranty
for the purchases item to the client.

2.2. Challenges of debugging ambient-oriented applications

Debugging distributed applications is hard because it is difficult
to determine the what caused a bug because it may affect or depend
on many nodes in the network or specific sequences of messages
between the nodes. For example, consider a bug manifests itself
in the mobile shopping application when returning an erroneous
result for the checkoutCart message in Fig. 1. In order to find what
caused the bug, one can use a distributed debugger to start examin-
ing the execution of the run message from the shipper (as it denotes
the request that produced the erroneous result). In the worst case,
one also needs to examine the receive messages from the shipper,
credit bureau and inventory processes, and so on. Despite being a
small example, this may already imply the inspection of 4 differ-
ent nodes, and the understanding of the whole shopping checkout
protocol.

Debugging ambient-oriented applications is even harder
because of the radically different nature of the network topology
in which they run and the programming model on which are built.
In a non-blocking programming model, each received message is
processed to completion (there are no blocking receive operations),
nodes are subject to data deadlocks (a node will not hang due to a
race condition but it may not make any progress because it requires
the answer of another one), and relevant parts of the application
involve pipelining (Kola et al., 2005) (if a particular component gen-
erates returns incorrect results, other components may not detect it
immediately when messages are pipelined). The network topology
of mobile ad hoc networks, on the other hand, incurs in a high ratio
of unanticipated network failures (due to device mobility) which
further complicates the debugging process because nodes may dis-
connect and reconnect while executing/debugging an application,
and the faulty nodes may not be present at the time the bug mani-
fests.

These observations has led us to identify two challenges that
need to be addressed in order to enable distributed debugging in a
mobile environment:

Message-oriented debugging. In non-blocking concurrency mod-
els, non-determinism is limited to the order in which asynchronous
messages are processed since a message is executed atomically,
i.e., no external thread can interleave on each instruction while
a message is being processed. As such, a debugger should be
able to trace asynchronous messages exchange between different
processes and allow developers to establish a happened-before rela-
tion (Lamport, 1978) between them. In sequential debugging, a

Download	English	Version:

https://daneshyari.com/en/article/6885714

Download	Persian	Version:

https://daneshyari.com/article/6885714

Daneshyari.com

https://daneshyari.com/en/article/6885714
https://daneshyari.com/article/6885714
https://daneshyari.com/

