
Please cite this article in press as: Wang, T., et al., Workload-aware anomaly detection for Web applications. J. Syst. Software (2013),
http://dx.doi.org/10.1016/j.jss.2013.03.060

ARTICLE IN PRESSG Model
JSS-9130; No. of Pages 14

The Journal of Systems and Software xxx (2013) xxx–xxx

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

Workload-aware anomaly detection for Web applications�

Tao Wanga,b,c,∗, Jun Weia,b, Wenbo Zhangb, Hua Zhongb, Tao Huanga,b

a State Key Laboratory of Computer Science, Beijing 100190, PR China
b Institute of Software, Chinese Academy of Sciences, Beijing 100190, PR China
c University of Chinese Academy of Sciences, Beijing 100049, PR China

a r t i c l e i n f o

Article history:
Received 8 October 2012
Received in revised form 3 February 2013
Accepted 15 March 2013
Available online xxx

Keywords:
Anomaly detection
Web applications
Local outlier factor

a b s t r a c t

The failure of Web applications often affects a large population of customers, and leads to severe eco-
nomic loss. Anomaly detection is essential for improving the reliability of Web applications. Current
approaches model correlations among metrics, and detect anomalies when the correlations are broken.
However, dynamic workloads cause the metric correlations to change over time. Moreover, modeling var-
ious metric correlations are difficult in complex Web applications. This paper addresses these problems
and proposes an online anomaly detection approach for Web applications. We present an incremental
clustering algorithm for training workload patterns online, and employ the local outlier factor (LOF) in the
recognized workload pattern to detect anomalies. In addition, we locate the anomalous metrics with the
Student’s t-test method. We evaluated our approach on a testbed running the TPC-W industry-standard
benchmark. The experimental results show that our approach is able to (1) capture workload fluctua-
tions accurately, (2) detect typical faults effectively and (3) has advantages over two contemporary ones
in accuracy.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Web applications (e.g., e-commerce application) provide simul-
taneous services to a large number of users on the Internet.
The failure of these services often affects a large population of
customers, and leads to severe economic loss. For example, 1 h
downtime of Paypal led to more than 7.2 million dollar loss in
transactions in August 2009 (Shankland, 2009). Tellme networks
estimates that operators take 75% of the failure recovery time to
detect faults (Chen et al., 2004). The study also shows that detecting
faults in advance prevents 65% of failure occurrences (Oppenheimer
et al., 2003). Anomalies, which do not conform to a defined notion
of normal behavior, often demonstrate the occurrence of faults
(Chandola et al., 2009). Therefore, detecting anomalies is essential
for improving the reliability of Web applications.

System operators usually employ management systems (e.g.,
IBM Tivoli and HP OpenView) to set rules to trigger alerts based on
the collected monitoring data. However, it is difficult to manually

� This article is an extended version of the paper “Workload-Aware Online
Anomaly Detection in Enterprise Applications with Local Outlier Factor” that
appeared in Proceedings of the 36th Annual Computer Software and Applications
Conference (COMPSAC 2012) (Regular Paper).

∗ Corresponding author at: Institute of Software, Chinese Academy of Sciences,
Beijing 100190, PR China. Tel.: +86 1062661583x637; fax: +86 1062661580.

E-mail addresses: wangtao08@otcaix.iscas.ac.cn, twang2008@gmail.com
(T. Wang), wj@otcaix.iscas.ac.cn (J. Wei), zhangwenbo@otcaix.iscas.ac.cn
(W. Zhang), zhongh@otcaix.iscas.ac.cn (H. Zhong), tao@otcaix.iscas.ac.cn (T. Huang).

set suitable thresholds for so many metrics in a complex Web
application. Current approaches use specific analytic forms to
model correlations among metrics. The analytic forms include lin-
ear regression (Jiang et al., 2006b), locally weighted regression
(Munawar and Ward, 2007), Gaussian Mixture Model (Zhen et al.,
2006)), and so on. These approaches detect anomalies, when the
modeled correlations are broken. They can be easily extended to
many applications without domain specific knowledge.

However, commercial cloud computing environments are char-
acterized by the extreme diversity of Web applications and
dynamic workloads from the Internet. They have raised great chal-
lenges for detecting anomalies online. Enterprise cloud such as
Google Apps allows more than four million enterprises to deploy
their applications for use by more than forty million users (Google,
2012). These applications provide different services, and have var-
ious workload characteristics. Thus, the current correlation-based
approaches suffer from several shortcomings. First, they use the
same mathematical form to model correlations among metrics.
However, since there probably exist various complex correlations
in kinds of applications, it is difficult to model these correlations
with the same assumed mathematical model. More importantly,
they assume that the modeled metric correlations hold during nor-
mal operations, but these correlations vary as workloads fluctuate.

Recent studies have shown that the workload in the Internet
fluctuates over multiple time scales in time-of-day and month-of-
year effects (Williams et al., 2005). For example, Arlitt et al. (2001)
analyzed the log of a large-scale e-retail website, and demon-
strated that the workloads were different during various periods.

0164-1212/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2013.03.060

dx.doi.org/10.1016/j.jss.2013.03.060
dx.doi.org/10.1016/j.jss.2013.03.060
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:wangtao08@otcaix.iscas.ac.cn
mailto:twang2008@gmail.com
mailto:wj@otcaix.iscas.ac.cn
mailto:zhangwenbo@otcaix.iscas.ac.cn
mailto:zhongh@otcaix.iscas.ac.cn
mailto:tao@otcaix.iscas.ac.cn
dx.doi.org/10.1016/j.jss.2013.03.060

Please cite this article in press as: Wang, T., et al., Workload-aware anomaly detection for Web applications. J. Syst. Software (2013),
http://dx.doi.org/10.1016/j.jss.2013.03.060

ARTICLE IN PRESSG Model
JSS-9130; No. of Pages 14

2 T. Wang et al. / The Journal of Systems and Software xxx (2013) xxx–xxx

Unfortunately, current anomaly detection approaches do not ade-
quately take into account the influence of dynamic workloads. We
give two examples to illustrate why considering workloads for the
anomaly detection in Web applications is necessary as follows:

Example 1: Workloads influence metrics. For a Web applica-
tion, the CPU utilization is about 20% with 100 concurrent users,
while that is about 70% with 300 concurrent users in the normal
situation. How do operators decide whether the system is normal
or not when the CPU utilization is about 70%? The system is normal
with 300 concurrent users, but probably abnormal with 100 con-
current users. However, the current rule based approaches only set
a threshold for the CPU utilization without taking into account the
number of concurrent users.

Example 2: Workloads influence metric correlations. For an
e-commerce website, customers always rush to purchase com-
modities for special events such as new advertising campaigns,
special promotions and approach of holidays like Christmas, while
they mostly just browse in ordinary days. Thus, different users’
access patterns lead to different correlations between browsing
and purchasing related metrics, such as reading and writing oper-
ations in database. However, the current metric correlation based
approaches describe the correlations among metrics with the same
model.

This paper addresses the above problems and proposes an online
anomaly detection approach for Web applications. We present a
method for training workload patterns with an incremental clus-
tering algorithm, and detect anomalies in the recognized workload
pattern with the local outlier factor (LOF). In addition, we employ
the Student’s t-test method to locate anomalous metrics.

The main contributions of this paper are as following:

• We online train and recognize workload patterns considering
both the access pattern and request volume with an incremental
clustering algorithm through grouping similar workload vectors
together.

• We detect anomalies in a specific workload pattern, which
provides a significant advantage over current works without
considering the influence of workload on anomaly detection.

• We employ LOF to detect anomalies, instead of modeling corre-
lations with assumed mathematical forms in the existing works.

• We evaluate our approach on the TPC-W benchmark. The exper-
imental results demonstrate that our approach is able to capture
workload fluctuations accurately, can detect typical faults effec-
tively, and performs better than two contemporary approaches
in accuracy.

The remainder of this paper is organized as follows. Section 2
presents an incremental clustering algorithm for recognizing work-
load patterns. Section 3 presents our online anomaly detection
approach in detail. Section 4 presents the experimental results.
Section 5 compares our work with related work. Section 6 dis-
cusses the limitations of our work and possible extensions. Section
7 concludes the paper.

2. Workload pattern recognition with incremental
clustering

2.1. Characterization of workload in Web applications

We characterize the workload of Web applications in this
subsection. The object of our study is the component-based trans-
actional Web applications. The most typical representative of these
applications is the JEE application. Web applications are composed
of components, and process transactional requests. They are usually
deployed on a typical multi-tier infrastructure to provide services

for online users with web interface. The infrastructure is composed
of a web server, an application server and a database server. The
web server provides interaction interfaces to users for presenting
data in the front tier; the application server supports application
logic in the middle tier; the database is used to store persistent
data in the back tier. Customers interact with the Web applications
through a series of HTTP requests; the object of a request is com-
monly a web page composed of HTML files generated from web
components (e.g., Java Servlet, Java Server Page and EJB); the appli-
cation server invokes web components to process these requests.
Thus, the invocation sequences of web components reflect vari-
ous workloads, and consume system physical resources (e.g., CPU,
memory and network bandwidth).

Customers always access websites to do different operations
during different periods. We regard different users’ behaviors in
accessing a website as different access patterns. We take the indus-
try standard e-business benchmark TPC-W (Menasc, 2002) as an
example to describe access patterns. TPC-W simulates the activities
of accessing an online bookstore website, and describes 14 differ-
ent web pages. These pages are divided into six browsing pages
and eight ordering pages. TPC-W specifies three different mixes of
web interactions according to the ratio of browsing related pages
to ordering related pages. Thus, we regard the mixes (including
browsing mix, shopping mix and ordering mix) as three access pat-
terns; different access patterns lead to different kinds of resource
utilization.

To characterize workloads, the traditional methods always
choose metrics (e.g. hits/s, pages/s, bits/s), and manually set their
thresholds to differentiate various workloads. For example, a work-
load is classified as type one when the speed of data transfer is from
5 M to 10 M bits/s. However, because the workload is associated
with many factors (e.g., the number of concurrent requests, users’
access patterns and request types), the traditional methods based
on metric threshold are not suitable for current transactional Web
applications.

First of all, we consider the request density, which is decided
by the request arrival rate (i.e., the number of requests arrived per
second) and the think-time (i.e., the interval between requests).
Moreover, a component has different resource utilization under
various access sequences (Urgaonkar et al., 2005); different cus-
tomers exhibit different navigational patterns (Menasc et al., 1999).
Thus, we ought to take into account the behavior of customers with
similar navigational patterns. We introduce the request matrix (rm)
to represent a workload, which considers both the request density
and the users’ access pattern. Given k components in an application,
we get a k-order matrix. The k is the number of web components
(e.g., servlet and Jsp) in a Web application. For example, if a Web
application is composed of three servlet and four Jsp files, the k is
seven in our method. A state represents a request type; the fre-
quency of state transitions during a period describes the users’
access pattern. Let’s denote:

rm =

⎡
⎢⎢⎢⎢⎣

p11 p12 . . . p1k

p21 p22 . . . p2k

...
...

. . .
...

pk1 pk2 . . . pkk

⎤
⎥⎥⎥⎥⎦

(1)

where pij represents the frequency of transitions from state i to
state j, and k is the number of components.

For convenience, we introduce workload vector (wv) trans-
formed from rm to characterize the runtime workload. Let us
denote

wv = {e1, e2, . . . , em, . . . , ek×k}, (2)

where em = pij, m = (i − 1) × k + j, and pij is an element in rm.

dx.doi.org/10.1016/j.jss.2013.03.060

Download English Version:

https://daneshyari.com/en/article/6885733

Download Persian Version:

https://daneshyari.com/article/6885733

Daneshyari.com

https://daneshyari.com/en/article/6885733
https://daneshyari.com/article/6885733
https://daneshyari.com

