
The Journal of Systems and Software 89 (2014) 87– 98

Contents lists available at ScienceDirect

The Journal of Systems and Software

jo u r n al homepage: www.elsev ier .com/ locate / j ss

A formal methodology for integral security design and verification of
network protocols

Jesus Diaz ∗, David Arroyo, Francisco B. Rodriguez
Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Spain

a r t i c l e i n f o

Article history:
Received 8 October 2012
Received in revised form 9 May 2013
Accepted 15 September 2013
Available online 8 October 2013

Keywords:
Secure development methodology
Formal model
Protocols security
Formal verification
WEP analysis

a b s t r a c t

In this work we propose a methodology for incorporating the verification of the security properties of net-
work protocols as a fundamental component of their design. This methodology can be separated in two
main parts: context and requirements analysis along with its informal verification; and formal represen-
tation of protocols and the corresponding procedural verification. Although the procedural verification
phase does not require any specific tool or approach, automated tools for model checking and/or theorem
proving offer a good trade-off between effort and results. In general, any security protocol design method-
ology should be an iterative process addressing in each step critical contexts of increasing complexity
as result of the considered protocol goals and the underlying threats. The effort required for detecting
flaws is proportional to the complexity of the critical context under evaluation, and thus our methodol-
ogy avoids wasting valuable system resources by analyzing simple flaws in the first stages of the design
process. In this work we provide a methodology in coherence with the step-by-step goals definition and
threat analysis using informal and formal procedures, being our main concern to highlight the adequacy
of such a methodology for promoting trust in the accordingly implemented communication protocols.
Our proposal is illustrated by its application to three communication protocols: MANA III, WEP’s Shared
Key Authentication and CHAT-SRP.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The application of formal methods for the verification of secu-
rity properties has received increased attention lately (see e.g.
Weldemariam et al., 2011; Mohammad and Alagar, 2011). Addi-
tionally, there already exist plenty of automatic tools for the formal
analysis of those security requirements (Blanchet, 2010; Andrew
and Gordon, 2002). Several methodologies also endorse the appli-
cation of these tools and theories in order to reach high security
guarantees for critical systems and protocols (Hernan et al., 2006;
Technical Report, 2009; Matsuo et al., 2010). However, a direct
application of these tools may be very resource-consuming during
the first stages of the design, since many flaws could be detected
just by performing an informal analysis. We propose a methodol-
ogy for the design of secure protocols that covers the whole design
process and tackles the mentioned problems by following an iter-
ative approach where the first steps are less resource consuming
than the last ones. Consequently, the complexity of the detected
flaws increases as we advance through the methodology steps.
Also, special emphasis is made into creating a correct abstraction

∗ Corresponding author.
E-mail address: j.diaz@uam.es (J. Diaz).

of the protocol environment and the attacker model. In this vein,
the proposed methodology allows a finer control on the attacker
modelization in order to fit it to the specific context in which the
protocol will be executed. Like we will see, an active application of
our methodology helps to reduce the impact of illegitimate actions
over the resulting network protocols. In the examples shown here,
we make use of ProVerif (Blanchet, 2010). In order to prove the
queried security properties, ProVerif tries to automatically deduce
them from the set of rules used to formalize the protocol. How-
ever, even though we have used ProVerif, any protocol verifier tool
or method can be applied without affecting the other parts of our
methodology.

The paper is structured as follows. We start in Section 2 with a
brief introduction to the existing frameworks and procedures for
the verification of security properties, along with a discussion on
the advantages of applying the verification procedures at the dif-
ferent stages of the software life cycle. In Section 3 we introduce
our methodology. In Section 4 we apply it to three different pro-
tocols (MANA III, WEP-SKA and CHAT-SRP). The three cases have
been chosen because they are publicly available examples of pro-
tocols failing at some point of our methodology (for the first and
second cases), allowing us to show its usefulness, while the third
protocol has been explicitly created using our methodology, and
successfully passes all its tests. Finally, we conclude this work in

0164-1212/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2013.09.020

dx.doi.org/10.1016/j.jss.2013.09.020
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2013.09.020&domain=pdf
mailto:j.diaz@uam.es
dx.doi.org/10.1016/j.jss.2013.09.020

88 J. Diaz et al. / The Journal of Systems and Software 89 (2014) 87– 98

Section 5, with a global perspective of the benefits provided by our
methodology.

2. Related work

According to the standard ISO27001, the deployment of
any information system cannot be interpreted as a product.
Certainly, the real implantation of an Information Security Man-
agement System (ISMS) is a process following a Plan-Do-Check-Act
methodology: (1) design of an ISMS, (2) consequent system imple-
mentation, (3) resulting product monitoring, (4) maintenance and
improvement of the ISMS and (5) eventual re-design of the sys-
tem to overcome problems not included in the original solution
but detected during production. This adaptive procedure should
be applied for the definition of any component of an information
security system. Thus, in this work we apply it to the design of
cryptographic protocols.

On the grounds of the above introduced Plan-Do-Check-Act
methodology, when creating secure cryptographic protocols we
require a framework for assessing the fulfillment of the assump-
tions made at the design stage, a procedure for evaluating the
goodness of the implemented product, and a model for identify-
ing possible problems or security threats. Regarding the evaluation
tasks, there are two main types of frameworks aimed to the task of
creating secure systems and protocols: frameworks applied at the
design phase (Hernan et al., 2006; Technical Report, 2009; Jurjens,
2003; Matsuo et al., 2010), and frameworks applied at the develop-
ment stage (Swigart and Campbell, 2008; Bhargavan et al., 2010).
In turn, the former sometimes rely on tools for automated reason-
ing specialized in the verification of security properties (Blanchet,
2010; Blanchet and Cadé, 2012; Barthe et al., 2009; Andrew and
Gordon, 2002; di Genova et al., 2006; Paulson et al., 2012). Sim-
ilarly, the latter are usually based on tools crafted for specific
programming languages (Goubault-Larrecq and Parrennes, 2005;
Chaki and Datta, 2009; Bhargavan et al., 2010; Aizatulin et al.,
2011b,a; Bengtson et al., 2011). Although in some proposals only
one type of framework is used, it should be noted that both of
them should be applied if the goal is the complete identification and
analysis of security requirements and assumptions. Imagine that
we choose to apply a verification tool only to the obtained system
implementation, and we indeed find security flaws. It may happen
that, while trying to fix them, we realize that one (or several) of
them is not just a coding flaw, but a design flaw. That means that
we must go back to the design phase and fix the flaw at that stage.
Moreover, if the flaw is serious enough, the existing implementa-
tion may need extensive changes, which will incur in unacceptable
costs and delays. Yet another disadvantage is that code verification
obviously relies on the existence of a tool for verifying the specific
programming language that has been used. Although these tools are
gaining popularity, the huge number of existing programming lan-
guages, along with the complexity of creating such a tool, suggests
that in the real world we should not trust in having always a code
verification tool suitable to our needs. On the other hand, apply-
ing a verification tool only to the design does not guarantee that
the implementation of that design will also be secure even though
the design seems to be so. However, it is technology independent.
Thus, the verification of the security properties of both the design
and implementation products should be applied when possible.

One major issue when creating security systems is the definition
of the security requirements that are expected to be fulfilled (rather
than what actions should and should not be executed Brown, 2013).
In turn, the attacker model has direct influence when it comes to
prove if the final system is compliant with those security require-
ments. This model defines the attacker capabilities that are neces-
sary to conduct the threat analysis (Anderson, 2008, Chapter 11).
Indeed this is of the utmost importance, since depending on what

the attacker can do, a designer/developer may need to protect dif-
ferent resources or take one approach or another. There exist sev-
eral classifications. For instance, an attacker can be said to be inter-
nal or external, depending on whether it is one of the entities which
take part in the protocol/system, or a third party that is not included
in it. An attacker can also be categorized as passive if the related
attacks consist in observing the messages and a subsequent infor-
mation inference, or as active if he/she actually inserts and/or mod-
ifies information on any communication link. On the other hand,
there are local adversaries only threatening a subset of an infor-
mation/communication system elements, versus global adversaries
that can access every component of a system (Díaz et al., 2002).
Major threats are determined by the so-called Byzantine adversary,
most commonly used as reference when designing fault tolerant
systems, and in the context of anonymous communication systems
(Digital Privacy: Theory, Technologies, and Practices, 2007, p. 78).
This kind of adversary is an internal attacker that behaves randomly
in order to corrupt the system output (Lamport et al., 1982).

Additionally, the attacker model can be further refined
by considering the attacker computing capabilities. One main
approach is the Dolev-Yao attacker model (Dolev and Yao, 1983),
which has proven to be a very powerful abstraction when used in
conjunction with methodologies for the formal verification of pro-
tocols (Abadi and Rogaway, 2002; Kemmerer, 1987; Paulson, 1998;
Houmani et al., 2009). It assumes an omniscient attacker who moni-
tors and can modify the messages sent through all communications
channels, but cannot break cryptographic primitives. In contrast
with this attacker model, there is the computational attacker model
(Bellare et al., 2000), which assumes that attackers are Probabilistic
Polynomial Time Turing Machines (PPTTM) and hence their com-
puting capabilities are consequently determined. This implies that
the cryptographic primitives are not assumed to be perfect and thus
any breakable primitive in a PPTTM scenario is vulnerable.

As main conclusion of this section we should recall the needs for
an adaptive and feedback process when designing any information
security protocol. Any possible methodology should be built upon
evaluation tools for the goals and assumptions involved both in the
design and the implementation stages, and any threat identified
during implementation or production should be handled as feed-
back to further improve the system design. In fact, the more detailed
attacker capabilities that are applied within the development level
frameworks are not considered in their design level counterparts,
and the more general models are ignored during development. This
makes sense up to a certain point, since during the design phase
the knowledge of the final system is not as deep as it is during its
development. Hence, threats that are clear in the implementation
stage can be quite obscure in the design process. However, there
may be exceptions that could and should be taken into account
during the design. For instance, the typical attacker models do not
take into account pieces of information that can be easily acces-
sible to an attacker by alternative means, like Facebook pages,
and public databases. Although these are very specific facts, the
effects that they could have on the ISMS performance can already be
detected and considered at the design stage. Consequently, our pro-
posal includes a finer control on the attacker capabilities during the
design of the protocol, and sets explicit control points that provide
feedback when security errors are found, easing their correction
in subsequent iterations. Also, in order to reach the highest assur-
ance levels of other methodologies, it includes the application of
procedural (either formal or computational) verification methods.

3. The methodology

Our methodology consists of two main parts, like shown in
Fig. 1. The first part includes the specification of the security
aims/requirements of the protocol, and the informal evaluation of

Download English Version:

https://daneshyari.com/en/article/6885738

Download Persian Version:

https://daneshyari.com/article/6885738

Daneshyari.com

https://daneshyari.com/en/article/6885738
https://daneshyari.com/article/6885738
https://daneshyari.com

