
The Journal of Systems and Software 88 (2014) 1– 24

Contents lists available at ScienceDirect

The Journal of Systems and Software

jo u r n al homepage: www.elsev ier .com/ locate / j ss

Coherent clusters in source code�

Syed Islama,∗, Jens Krinkea, David Binkleyb, Mark Harmana

a University College London, United Kingdom
b Loyola University Maryland, United States

a r t i c l e i n f o

Article history:
Received 19 November 2012
Received in revised form 16 July 2013
Accepted 18 July 2013
Available online 21 August 2013

Keywords:
Dependence analysis
Program comprehension
Software clustering

a b s t r a c t

This paper presents the results of a large scale empirical study of coherent dependence clusters. All state-
ments in a coherent dependence cluster depend upon the same set of statements and affect the same set
of statements; a coherent cluster’s statements have ‘coherent’ shared backward and forward dependence.
We introduce an approximation to efficiently locate coherent clusters and show that it has a minimum
precision of 97.76%. Our empirical study also finds that, despite their tight coherence constraints, coher-
ent dependence clusters are in abundance: 23 of the 30 programs studied have coherent clusters that
contain at least 10% of the whole program. Studying patterns of clustering in these programs reveals
that most programs contain multiple substantial coherent clusters. A series of subsequent case studies
uncover that all clusters of significant size map to a logical functionality and correspond to a program
structure. For example, we show that for the program acct, the top five coherent clusters all map to spe-
cific, yet otherwise non-obvious, functionality. Cluster visualization also brings out subtle deficiencies in
program structure and identifies potential refactoring candidates. A study of inter-cluster dependence is
used to highlight how coherent clusters are connected to each other, revealing higher-level structures,
which can be used in reverse engineering. Finally, studies are presented to illustrate how clusters are not
correlated with program faults as they remain stable during most system evolution.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.

1. Introduction

Program dependence analysis is a foundation for many activi-
ties in software engineering such as testing, comprehension, and
impact analysis (Binkley, 2007). For example, it is essential to
understand the relationships between different parts of a system
when making changes and the impacts of these changes (Gallagher
and Lyle, 1991). This has led to both static (Yau and Collofello, 1985;
Black, 2001) and blended (static and dynamic) (Ren et al., 2006,
2005) dependence analyses of the relationships between depend-
ence and impact.

One important property of dependence is the way in which it
may cluster. This occurs when a set of statements all depend upon
one another, forming a dependence cluster. Within such a cluster,
any change to an element potentially affects every other element
of the cluster. If such a dependence cluster is very large, then this
mutual dependence clearly has implications related to the cost of
maintaining the code.

In previous work (Binkley and Harman, 2005), we introduced
the study of dependence clusters in terms of program slicing and

� This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited.

∗ Corresponding author.
E-mail address: s.islam@cs.ucl.ac.uk (S. Islam).

demonstrated that large dependence clusters were (perhaps sur-
prisingly) common, both in production (closed source) code and in
open source code (Harman et al., 2009). Our findings over a large
corpus of C code was that 89% of the programs studied contained at
least one dependence cluster composed of 10% or more of the pro-
gram’s statements. The average size of the programs studied was
20KLoC, so these clusters of more than 10% denoted significant por-
tions of code. We also found evidence of super-large clusters: 40%
of the programs had a dependence cluster that consumed over half
of the program.

More recently, our finding that large clusters are widespread
in C systems has been replicated for other languages and systems
by other authors, both in open source and in proprietary code
(Acharya and Robinson, 2011; Beszédes et al., 2007; Szegedi et al.,
2007). Large dependence clusters were also found in Java systems
(Beszédes et al., 2007; Savernik, 2007; Szegedi et al., 2007) and in
legacy Cobol systems (Hajnal and Forgács, 2011).

There has been interesting work on the relationship between
faults, program size, and dependence clusters (Black et al., 2006),
and between impact analysis and dependence clusters (Acharya
and Robinson, 2011; Harman et al., 2009). Large dependence
clusters can be thought of as dependence ‘anti-patterns’ because
of the high impact that a change anywhere in the cluster has. For
example, it may lead to problems for on-going software mainte-
nance and evolution (Acharya and Robinson, 2011; Binkley et al.,
2008; Savernik, 2007). As a result, refactoring has been proposed

0164-1212/$ – see front matter © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2013.07.040

dx.doi.org/10.1016/j.jss.2013.07.040
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2013.07.040&domain=pdf
mailto:s.islam@cs.ucl.ac.uk
dx.doi.org/10.1016/j.jss.2013.07.040

2 S. Islam et al. / The Journal of Systems and Software 88 (2014) 1– 24

as a technique for breaking larger clusters of dependence into
smaller clusters (Binkley and Harman, 2005; Black et al., 2009).

Dependence cluster analysis is complicated by the fact that
inter-procedural program dependence is non-transitive, which
means that the statements in a traditional dependence cluster,
though they all depend on each other, may not each depend on
the same set of statements, nor need they necessarily affect the
same set of statements external to the cluster.

This paper introduces and empirically studies1 coherent depend-
ence clusters. In a coherent dependence cluster all statements share
identical intra-cluster and extra-cluster dependence. A coher-
ent dependence cluster is thus more constrained than a general
dependence cluster. A coherent dependence cluster retains the
essential property that all statements within the cluster are
mutually dependent, but adds the constraint that all incoming
dependence must be identical and all outgoing dependence must
also be identical. That is, all statements within a coherent clus-
ter depend upon the same set of statements outside the cluster
and all statements within a coherent cluster affect the same set of
statements outside the cluster.

This means that, when studying a coherent cluster, we need to
understand only a single external dependence context in order to
understand the behavior of the entire cluster. For a dependence
cluster that fails to meet the external constraint, statements of the
cluster may have a different external dependence context. This is
possible because inter-procedural dependence is non-transitive.

It might be thought that very few sets of statements would meet
these additional coherence constraints, or that, where such sets
of statements do meet the constraints, there would be relatively
few statements in the coherent cluster so-formed. Our empiri-
cal findings provide evidence that this is not the case: coherent
dependence clusters are common and they can be very large.

This paper is part of a series of work that we have conducted
in the area of dependence clusters. The overarching motivation for
this work is to gain a better understanding of the dependence clus-
ters found in programs. Although this paper is a continuation of
our previous work on dependence clusters, we present the work
in a completely new light. In this paper we show that the special-
ized version of dependence clusters, coherent clusters are found in
abundance in programs and need not be regarded as problems. We
rather show that these clusters map to logical program structures
which will aid developers in program comprehension and under-
standing. Furthermore, this paper extends the current knowledge
in the area and motivates future work by presenting initial results
of inter-cluster dependence which can be used as a foundation for
reverse engineering. We answer several representative open ques-
tions such as whether clusters are related to program faults and
how clusters change over time during system evolution.

The primary contributions of the paper are as follows:

1 An Empirical analysis of thirty programs assesses the frequency
and size of coherent dependence clusters. The results demon-
strate that large coherent clusters are common, validating their
further study.

2 Two further empirical validation studies consider the impact of
data-flow analysis precision and the precision of the approxima-
tion used to efficiently identify coherent clusters.

3 A series of four case studies shows how coherent clusters map to
logical program structures.

4 A study of inter-cluster dependence highlights how coherent
clusters form the building blocks of larger dependence struc-
tures where identification can support, as an example, reverse
engineering.

1 Preliminary results were presented at PASTE (Islam et al., 2010b).

5 A study of bug fixes finds no relationship between program faults
and coherent clusters implying that dependence clusters are not
responsible for program faults.

6 A longitudinal study of system evolution shows that coherent
clusters remain stable during evolution thus depicting the core
architecture of systems.

The remainder of this paper is organized as follows: Section
2 provides background on coherent clusters and their visual-
ization. Section 3 provides details on the subject programs, the
validation of the slice approximation used, and the experimen-
tal setup. This is followed by quantitative and qualitative studies
into the existence and impact of coherent dependence clusters and
the inter-cluster dependence study. It also includes studies on pro-
gram faults and system evolution and their relationship to coherent
clusters. Section 4 considers related work and finally, Section 5
summarizes the work presented.

2. Background

This section provides background on dependence clusters. It
first presents a sequence of definitions that culminate in the defini-
tion for a coherent dependence cluster. Previous work (Binkley and
Harman, 2005; Harman et al., 2009) has used the term dependence
cluster for a particular kind of cluster, termed a mutually-dependent
cluster herein to emphasize that such clusters consider only mutual
dependence internal to the cluster. This distinction allows the def-
inition to be extended to incorporate external dependence. The
section also reviews the current graph-based visualizations for
dependence clusters.

2.1. Dependence clusters

Informally, mutually-dependent clusters are maximal sets of pro-
gram statements that mutually depend upon one another (Harman
et al., 2009). They are formalized in terms of mutually dependent
sets in the following definition.

Definition 2.1 (Mutually-dependent set and cluster (Harman et al.,
2009)). A mutually-dependent set (MDS) is a set of statements, S,
such that

∀x, y ∈ S : x depends on y.
A mutually-dependent cluster is a maximal MDS; thus, it is an

MDS not properly contained within another MDS.

The definition of an MDS is parameterized by an underlying
depends-on relation. Ideally, such a relation would precisely cap-
ture the impact, influence, and dependence between statements.
Unfortunately, such a relation is not computable (Weiser, 1984).
A well known approximation is based on Weiser’s program slice
(Weiser, 1984): a slice is the set of program statements that affect
the values computed at a particular statement of interest (referred
to as a slicing criterion). While its computation is undecidable, a
minimal (or precise) slice includes exactly those program elements
that affect the criterion and thus can be used to define an MDS in
which t depends on s iff s is in the minimal slice taken with respect
to slicing criterion t.

The slice-based definition is useful because algorithms to com-
pute approximations to minimal slices can be used to define
and compute approximations to mutually-dependent clusters. One
such algorithm computes a slice as the solution to a reachability
problem over a program’s System Dependence Graph (SDG) (Horwitz
et al., 1990). An SDG is comprised of vertices, which essentially rep-
resent the statements of the program and two kinds of edges: data
dependence edges and control dependence edges. A data depend-
ence connects a definition of a variable with each use of the variable

Download	English	Version:

https://daneshyari.com/en/article/6885750

Download	Persian	Version:

https://daneshyari.com/article/6885750

Daneshyari.com

https://daneshyari.com/en/article/6885750
https://daneshyari.com/article/6885750
https://daneshyari.com/

