The Journal of Systems and Software 88 (2014) 231-249

=

o Journalof
Systems and Software

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Visualizing protected variations in evolving software designs

4 =
@ CrossMark

Sébastien Rufiange *, Christopher P. Fuhrman

Ecole de technologie supérieure, 1100 rue Notre-Dame Ouest, Montréal, Québec H3C 1K3, Canada

ARTICLE INFO ABSTRACT

Article history:

Received 7 April 2013

Received in revised form 20 October 2013
Accepted 22 October 2013

Available online 22 November 2013

Identifying and tracking evolving software structures at a design level is a challenging task. Although
there are ways to visualize this information statically, there is a need for methods that help analyzing
the evolution of software design elements. In this paper, we present a new visual approach to identify
variability zones in software designs and explore how they evolve over time. To verify the usefulness of
our approach, we did a user study in which participants had to browse software histories and find visual
patterns. Most participants were able to find interesting observations and found our approach intuitive
and useful. We present a number of design aspects that were observed by participants and the authors
using our [HVis tool on four open-source projects.

Keywords:
Software visualization

Software design
Information hiding
Software evolution

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Changes in a software project happen for different reasons.
There can be bug-fixes to respect quality attributes such as reli-
ability, security or performance. There can be changes due to the
uncertainty that is inherent to early phases of risk-driven iterative
projects. There can be additional functional requirements. There
could be a need to run the software on a different platform or
on a different operating system. An important characteristic of an
enduring software design is its ability to handle change over time.

Information hiding (Parnas, 1971)is a core principle in structured
and object-oriented design. Designs that apply information hiding
aim to hide parts of the software that are likely to change in order
to reduce the impact of that potential change on other modules.
Information hiding favors designs that have loose coupling to the
elements that are potentially unstable.

There are different strategies to achieve information hiding.
Encapsulation has been defined as “building a capsule, [...] a concep-
tual barrier around some collection of things” (Wirfs-Brock et al.,
1990). Encapsulation implies that a designer explicitly specifies the
boundary and what is visible to the outside. Programming environ-
ments typically offer mechanisms of access control of capsules to
specify and enforce what is hidden and what is visible. A simple
example is a Java class that has private members with public meth-
ods. Access-control encapsulation can also be used at the package
level in Java, such that classes in one package are invisible to classes
outside of that package.

* Corresponding author. Tel.: +1 5146546100.
E-mail addresses: sebastien@rufiange.com (S. Rufiange),
christopher.fuhrman@etsmtl.ca (C.P. Fuhrman).

0164-1212/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2013.10.044

A related idea is the open/closed principle (Meyer, 1988), which
suggest that new features in a software should be implemented by
extensions (e.g., adding new classes and methods to a sub-class)
rather than modifications, to reduce the impacts on client modules
that depend on existing features. Similarly, the idea of protected
variations (Cockburn, 1996; Larman, 2001, 2005) seeks to isolate
what is change-prone (or unstable) behind an intentionally stable
interface. Polymorphism or composition can then be used to define
varying implementations while the clients only access the inter-
face. Larman (2001) mentioned that the open/closed principle and
protected variations are essentially equivalent to the more generic
and fundamental information hiding principle. McConnell (2004)
proposed the iceberg metaphor as shown in Fig. 1. In terms of the
open/closed principle, a module is said to be “closed to modifica-
tion” yet “open to extension”. These relationships are always with
respect to a client (or set of clients) that should not be affected by
the extensions. This defines a frame of reference relative to client
classes.

In practice, popular object-oriented design patterns (Gamma
et al., 1994) strive to make designs more tolerant to changes.
Many of these patterns make use of protected variations to pro-
tect respective client classes from extensions or modifications to
the software. These dimensions of extension are intentional, with
structures that use polymorphism (e.g., in Strategy and Observer) or
composition (e.g., in Facade, Iterator and Proxy). However, despite
the intentional dimensions for extension, these patterns are not
explicit in their definitions about what is hidden or visible to the
clients. Protected variations implies that clients only use the sta-
ble interface; the information hiding principle implies they should
not know or see the extension classes. Ideally, a designer could
specify this with access control. However, this is impractical in
some environments with traditional access control mechanisms.


dx.doi.org/10.1016/j.jss.2013.10.044
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2013.10.044&domain=pdf
mailto:sebastien@rufiange.com
mailto:christopher.fuhrman@etsmtl.ca
dx.doi.org/10.1016/j.jss.2013.10.044

232

Client
classes

Unstable (change-prone,
complex)

Fig. 1. Iceberg metaphor for information hiding proposed by McConnell (2004).
Client classes should not see that which is considered unstable or change-prone.

Client 1 ]
¥ Us,
i Ss 1
| \ « interface »
\ +IndirectionIF
-Service
NewService

Fig. 2. Interface patterninJava(Grand, 2002). Package-level access controls prevent
coupling to implementations inside the package only.

Extension (hidden) classes could be in various different packages,
scattered somewhat arbitrarily throughout a design. It is therefore

challenging to determine the boundaries of the capsule (i.e., the
iceberg).

1.1. Controlling access to unstable elements

Grand (2002) proposed the Interface pattern which is indeed a
realization of protected variations. The pattern proposes a solution
that keeps “client classes independent of specific data-and-service-
providing classes” such that changes to the latter classes will not
affect the clients. Fig. 2 illustrates the pattern implemented in
the context of a package, such that package access control pre-
vents clients from seeing the implementation (Service) classes. This
access control strategy works well provided all the implementa-
tions can be constrained within a package. Consider, however, an
extension to this design where some NewService is added outside
the package. There is no standard way of preventing clients from
accessing this NewService directly.

Since strict access control beyond the class level is not com-
monly used by developers, the principles of “structure hiding” and
“information restriction” are not always respected in practice. In
fact, the Law of Demeter (LoD) essentially says that developers of

S. Rufiange, C.P. Fuhrman / The Journal of Systems and Software 88 (2014) 231-249

client classes should be more conservative about using the informa-
tion they can get from a class (Lieberherr et al., 1988). Also known
as “Don’t talk to strangers,” the LoD could be thought of as fol-
lows: every class that a client class accesses could be a Facade.! By
not accessing the “strangers” behind the Facade, a client class is
protecting itself from potential variations of those classes.

Because traditional private-public access control mechanisms
in languages are often not applied at architectural levels, there
exist ad-hoc solutions. One such solution is the “Explicit Exten-
sion Rule” in Java Eclipse plug-ins, which is a convention to name
hidden, change-prone packages as “.internal.” (Gamma and Beck,
2003). The access control to these packages is not enforced by a
compiler, but environments such as Eclipse give warnings or errors
when code is built? if these access control conventions are not fol-
lowed. Similarly, manifests in OSGi bundles (Hall et al., 2011) can
allow defining modular components with access control enforced
within the Eclipse Equinox reference implementation.

Some language-specific encapsulation mechanisms exist
beyond the class and package level. The “internal” access modifier
in C# (Microsoft, 2012) limits visibility of members to files in the
same assembly, and there is a planned extension to Java to support
modules (Reinhold, 2011). However, even with a broader scope
of access control, it remains a challenge to assure that the type of
extension proposed outside the scope of an arbitrary “module”,
as depicted by the NewService class in Fig. 2, that is visible to the
Client. The problem stems from the fact that modules are specified

in a top-down way, rather than being identified dynamically based
on coupling.

1.2. Tracking protected variations over time

Differences in the software development process affect the way
that designs evolve, and in turn how encapsulation might be spec-
ified during the process. As stated by Parnas (1971), it is the
designer who decides where the boundary is between what is hid-
den and what is private. This is traditionally a top-down strategy
of design, because important decisions are made before client pro-
grammers are exposed to the programming interfaces. At the class
and package level, things are straightforward: a designer proposes
a software class and specifies which parts will be visible to the out-
side and which parts will be hidden. However, designs involving
a lot of composition of reusable libraries are said to be emergent
(McConnell, 2004). It may not be clear at the higher levels where to
apply information hiding; if it is applied too conservatively, it might
restrict freedom in bottom-up design. Furthermore, design patterns
are often applied in groups (Buschmann et al., 1996). The unstable
elements of one pattern might be clients of stable elements of other
patterns.

Therefore, specifying access control at the architectural level is
arguably more challenging. Again, some solutions exist: the Layers
pattern and the Model-View-Controller pattern (Reenskaug, 1979)
are both examples of where there is a convention of access control.
That is, certain lower-level layers (i.e., the Model) should not be
coupled to (“see”) upper-level layers (i.e., the View).

Keeping track of coupling over the evolution of a project is an
important concern for software architects, but so is the tracking of
the dimensions of variability. Once a design with protected varia-
tions is specified (regardless of access control conventions), several
questions remain: (1) does the protected-variations dimension of
the design serve a purpose (are new variations implemented)? (2)
do the “stable” parts get re-used by more and more clients (are

1 or the client-facing class of any of the patterns that hide change-prone or com-
plex structures, e.g., Proxy, Iterator, Factory.

2 http://help.eclipse.org (Plug-in Runtime: Access Rules).


http://help.eclipse.org

Download English Version:

https://daneshyari.com/en/article/6885775

Download Persian Version:

https://daneshyari.com/article/6885775

Daneshyari.com


https://daneshyari.com/en/article/6885775
https://daneshyari.com/article/6885775
https://daneshyari.com

