
Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Reactive side-channel countermeasures: Applicability and quantitative
security evaluation

Giovanni Agosta, Alessandro Barenghi⁎, Gerardo Pelosi, Michele Scandale
Politecnico di Milano. Department of Electronics, Information and Bioengineering, DEIB, Piazza Leonardo da Vinci, 32. 20133, Italy

A R T I C L E I N F O

Keywords:
Applied cryptography
Embedded systems security
Computer security
Automated countermeasure application
Reactive countermeasures

A B S T R A C T

The security of cryptographic implementations running on embedded systems is threatened by side-channel
attacks. Such attacks retrieve a secret key from a computing device observing the information leaking on un-
intended channels such as the energy consumed during a computation. The vast majority of the countermeasures
proposed against such attacks aims at preventing the attacker from exploiting fruitfully the information leaking
on the side-channel either altering it or hiding it within a higher noise envelope. Whilst all these counter-
measures provide a quantitative security margin against an attacker, they do not provide an indication of having
been successfully overcome, thus forsaking the possibility of taking a reactive action upon an eventual security
breach. In an effort to propose a reactive countermeasure, we describe our proposal suggesting the introduction
of redundant computations employing fixed fake keys (a.k.a. chaffs) to pollute the leaked information with
plausible albeit deceitful one. We provide an in depth analysis of the proposed approach, highlighting the
constraints to its effective applicability, and the boundary conditions which allow its employment for the se-
curization of a system. We detail the attacker model considered, and the reactive security margin provided by the
proposed scheme, highlighting the extent of the realizability of a reactive countermeasure, given the nature of
the side-channel information. To provide experimental backing to our analysis, effectiveness and efficiency
results on the Advanced Encryption Standard (AES) cipher implementation as well as lightweight block ciphers
implementations running on an ARM Cortex-M4 processor are shown.

1. Introduction

In recent years, the use of cryptographic primitives became essential
for embedded systems due to their widespread adoption in several se-
curity-sensitive domains such as health-care, automotive and industrial
control. Modern cryptographic systems are designed to withstand both
protocol-level and mathematical cryptanalyses; as a consequence, at-
tackers often focus on the analysis of the side effects of the computation
performed by the device. There is a vast corpus of academic and in-
dustrial literature proving how the physical access to an embedded
device may enable the recovery of sensitive information (typically, the
secret key employed in a cryptographic algorithm), which is otherwise
supposed to be hidden, through exploiting the side-channel leakages of
the underlying computing platform [1–4].

Among the possible cryptanalyses employing the side-channel
leakage, Differential Power Analysis (DPA) and Differential Electro-
magnetic Analysis (DEMA) are very well known [3,5,6]. Both analyses
follow a common work-flow: first they record a measurement of either

the power consumption or the electro-magnetic (EM) emissions of the
target device (the measurements being known as power- or EM-traces)
for a large number of runs with different input values. Subsequently,
they select an intermediate operation of the algorithm employing a part
of the secret key, and compute a consumption/emissions prediction for
every possible value of the secret key portion, according to a model of
the triggered switching activity (e.g., the Hamming weight of the
output of the operation). Finally, the predicted consumption/emission
values are statistically matched against each sample of the recorded
power/EM traces to assess which key hypothesis yields the prediction
fitting best the actual measurements. In this fashion, the secret key can
be recovered, one part at time, even if the relevant information is stored
within the device in a non accessible way.

DPAs and DEMAs have been proven practically viable against pro-
duction grade implementations of ciphers, both in hardware and soft-
ware, even with an inexpensive equipment. A significant amount of
research effort has been directed to devise effective and efficient
countermeasures. The most adopted strategies to design

https://doi.org/10.1016/j.micpro.2018.07.001
Received 26 March 2018; Accepted 4 July 2018

⁎ Corresponding author.
E-mail addresses: giovanni.agosta@polimi.it (G. Agosta), alessandro.barenghi@polimi.it (A. Barenghi), gerardo.pelosi@polimi.it (G. Pelosi),

michele.scandale@polimi.it (M. Scandale).

Microprocessors and Microsystems 62 (2018) 50–60

0141-9331/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01419331
https://www.elsevier.com/locate/micpro
https://doi.org/10.1016/j.micpro.2018.07.001
https://doi.org/10.1016/j.micpro.2018.07.001
mailto:giovanni.agosta@polimi.it
mailto:alessandro.barenghi@polimi.it
mailto:gerardo.pelosi@polimi.it
mailto:michele.scandale@polimi.it
https://doi.org/10.1016/j.micpro.2018.07.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2018.07.001&domain=pdf


countermeasures focus on the principles of masking [3,7–9], hiding [3],
and morphing [10–12] and aim at reducing the effective side-channel
leakage. Masking aims at invalidating the link between the predicted
hypothetical emission/power consumption values (bound to the se-
lected intermediate operation) and the actual values processed by the
cryptographic primitive. In a masked implementation, each sensitive
intermediate value is concealed through splitting it in a number of
shares, which are then separately processed. Hence, the cryptographic
primitive is modified to correctly process each share and recombine
them only at the end of the computation. Hiding methods aim at con-
cealing the relation between the emission/power consumption of the
device and the operations performed by the cryptographic primitive. In
software cipher implementations, these strategies are based on execu-
tion flow randomization via instructions rescheduling (e.g., permuting
the sequence of accesses to look-up tables) and/or on inserting random
delays made of dummy operations. The morphing technique prevents
an attacker from being able to construct a reliable model of the side-
channel behavior of the device, changing how a cryptographic primi-
tive is computed at each execution of the algorithm. The first proposed
technique to achieve this combines the implementation of the chosen
cryptographic primitive with a polymorphic engine which dynamically
re-writes the binary code of the sensitive instructions to be protected, at
run-time [10]. This strategy enables the generation of many different
versions of the protected code at the designer’s will, at each run of the
cipher, thus preventing any attacker both from recognizing the exact
point in time where the selected intermediate operation is executed,
and from understanding how such operation is actually computed. The
former effect can be classified as hiding-in-time, while the latter one
prevents the formulation of a proper consumption model. Tackling the
issue of platforms where the code memory is not writable, the approach
described in [11] picks at random among a set of semantically
equivalent code fragments to obtain different execution paths at each
run of the same protected algorithm implementation.

All the aforementioned countermeasure strategies aim at either re-
ducing the actual side-channel leakage or preventing its exploitation
altogether, as the prime and only way to hinder side-channel attacks.
None of the aforementioned strategies actually leave the leakage intact
and blend it within a crowd of plausible, albeit fake, pieces of in-
formation. By contrast, it is commonplace, and a well established
practice, in the network and system security communities, to provide
intentionally vulnerable, worthless targets to the adversaries [13]. The
purpose of such targets is to act as a red herring for adversaries, en-
abling the detection of malicious intentions towards the networks and
hosts owned by the legitimate users (e.g., intrusion attempts). Other
notable examples of using decoy resources to detect security breaches is
found in the practice of deploying either phony credentials (such as
credit card numbers) to discover their theft, or fabricated documents to
act as bait for possible inside adversaries aiming at violating the sys-
tem’s usage policy.

The focus of this work is to provide an in depth description and
security analysis of the reactive defense strategy presented in [12],
against a side-channel attacker who has complete knowledge of the
details of a software implementation of a block cipher primitive, and is
trying to exfiltrate the secret key exploiting the information leakage
during the decryption of a ciphertext. The attacker is assumed to have
no means of access to the output of the decryption on the device, can
only observe the actions performed by the attacked security system, and
should not be able to distinguish an incorrectly decrypted plaintext
from a correct one without interacting with the system itself. Practical
application scenarios include keyless entry systems, physical authenti-
cation systems based on the transmission of an encrypted cryptographic
token, or broadcast authentication schemes for wireless sensor net-
works. The chaff countermeasure, proposed in [12], swarms the attacker
with dummy side-channel leakages among which the real one is
blended. This allows the system designer to detect side-channel attacks
whenever the adversary employs an incorrect value to produce forged

encrypted content to be fed into the attacked system. This, in turn,
allows a prompt response to the breach attempt before the attack suc-
ceeds, a much welcome feature in domains such as automotive, sensor
networks and industrial control. We note that, since the fake leakage is
not distinguishable from the real one, the security of the proposed de-
fense strategy is not altered even when pitted against profiled crypta-
nalyses, as the fake leakage will provide the same information of the
correct one to them. This is in contrast with leakage suppression tech-
niques proposed in the current state-of-the-art (e.g., masking and
hiding), where the defender attempts at hindering the exploitation of
the leaked information raising the required technical effort to lead the
attack.

We describe the application scenario of such a countermeasure,
pointing out the applicative context and attacker model, and providing
a hint of how the recently proposed Honey Encryption scheme [14,15]
may be employed to broaden the number of viable application scenarios
where the chaff countermeasure can be applied; thus, expanding and
improving the discussion with respect to the one in [12]. We report how
to automatically apply the proposed countermeasure to software cipher
implementations, and implement it as a transparent compiler pass in
the LLVM compiler suite. Subsequently, we provide a new and detailed
security analysis, highlighting the extent of the protection provided by
the use of chaff-keys both against a single side-channel attack, and
against a cascade of attacks. To practically ground our security analysis,
we report experimental results on execution time and code size over-
heads due to the introduction of chaff-based countermeasures on a
range of block ciphers, suitable to the use case scenario for which the
chaff countermeasure is proposed. We provide results on the AES cipher,
as it is a widely used standard employed also in current high security
keyless entry systems (e.g., NXP ACTIC-4G [16], Atmel
ATA5795C [17]), and was analyzed in [12], albeit with a lower number
of chaff keys. We extend our experimental campaign, with respect to
the one in [12], considering the computing requirements and code sizes
of the lightweight ciphers XTEA [18], SPECK 128/128 [19], SIMON 128/
128 [19], PRESENT and CLEFIA. PRESENT and CLEFIA are the ISO standard
lightweight ciphers [20].

The rest of the article is organized as follows: in Section 2 we point
out the scenario and the applicability conditions of the chaff-based
countermeasure, as well as the attacker model. In Section 3 we high-
light the property of a chaff-protected implementation and describe the
methodology and tool to automatically apply the countermeasure. In
Section 4 we detail the security analysis of the chaff-based approach,
while in Section 5 we provide our experimental evaluation, high-
lighting the advantages of applying the chaff-countermeasure to light-
weight ciphers. Finally, in Section 6 we draw our conclusions.

2. Scenario

The scenario where the reactive chaff-based countermeasure is de-
ployed is the one where the system manufacturer desires the deployed
equipment to take an active stance against side-channel adversaries
through reacting to an attack attempt, e.g., signal to the data owner the
malicious action or wipe the secret key in the device.

The typical information flow of the scenario where it is possible to
put into being a reactive countermeasure is the one represented in
Fig. 1. In this setting, a message produced in a safe environment and
encrypted by means of a symmetric cipher, is sent to the device targeted
by the side-channel attacker. The encrypted content is sent over a
transport layer, which is assumed to be completely open to the at-
tacker’s eavesdropping actions. The message confidentiality during
transmission is provided by the symmetric encryption layer, while un-
intentional transmission errors are prevented by an error correction
code applied to the encrypted message. The content is decrypted by the
deployed device into which the secret key is stored by the manufacturer
in a non-extractable fashion. This decryption action is the actual target
of side-channel attacks, with the final purpose of employing the derived

G. Agosta et al. Microprocessors and Microsystems 62 (2018) 50–60

51



Download English Version:

https://daneshyari.com/en/article/6885789

Download Persian Version:

https://daneshyari.com/article/6885789

Daneshyari.com

https://daneshyari.com/en/article/6885789
https://daneshyari.com/article/6885789
https://daneshyari.com

