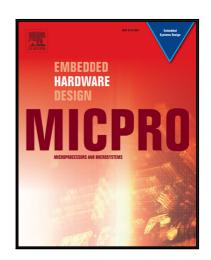
Accepted Manuscript

Abacus turn model-based NoC routing for interconnects with switch or link failures


Poona Bahrebar, Dirk Stroobandt

PII: S0141-9331(17)30173-4 DOI: 10.1016/j.micpro.2018.01.005

Reference: MICPRO 2653

To appear in: *Microprocessors and Microsystems*

Received date: 20 April 2017 Revised date: 29 October 2017 Accepted date: 26 January 2018

Please cite this article as: Poona Bahrebar, Dirk Stroobandt, Abacus turn model-based NoC routing for interconnects with switch or link failures, *Microprocessors and Microsystems* (2018), doi: 10.1016/j.micpro.2018.01.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Abacus turn model-based NoC routing for interconnects with switch or link failures

Poona Bahrebar and Dirk Stroobandt

Department of Electronics and Information Systems (ELIS) Ghent University iGent, Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium

Abstract

With the aggressive scaling of the VLSI technology, Networks-on-Chip (NoCs) are becoming more susceptible to faults. Therefore, designing reliable and efficient routing methods is of significant importance. Most of the existing faulttolerant techniques rely on rerouting solutions which may degrade the network performance drastically not only by taking unnecessary longer paths, but also by creating hotspots around the faults. Moreover, such off-line techniques cannot adapt to the dynamic traffic distribution in the network. In this paper, a reconfigurable and deadlock-free routing method is proposed based on the Abacus Turn Model (AbTM) to tolerate single and double switch or link failures. The required resources are kept to a minimum by avoiding to use virtual channels and routing tables. The proposed method is able to dynamically adjust the availability of the healthy paths according to the location of failures and congestion in the network to minimize rerouting. Moreover, it can grant a high degree of adaptiveness to the packets. This efficiency makes the proposed method a powerful asset for reliable routing in NoCs. The experimental results demonstrate that an 8×8 mesh network remains 100% reliable against single faults, and 99.8% and 99.94% reliable against double switch and link failures, respectively.

Keywords: Network-on-Chip (NoC), fault-tolerant routing methods,

 $Email\ address: \ {\tt fpoona.bahrebar},\ {\tt dirk.stroobandt} \\ {\tt Qugent.be}\ ({\tt Poona}\ {\tt Bahrebar}\ {\tt and}\ {\tt Dirk}\ {\tt Stroobandt})$

Download English Version:

https://daneshyari.com/en/article/6885879

Download Persian Version:

https://daneshyari.com/article/6885879

<u>Daneshyari.com</u>