
Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

An FPGA array for cellular genetic algorithms: Application to the minimum
energy broadcast problem

Pedro Vieira dos Santos⁎, José Carlos Alves, João Canas Ferreira
INESC TEC - INESC Technology and Science and FEUP - Faculty of Engineering, University of Porto, Porto, Portugal

A R T I C L E I N F O

Keywords:
Genetic algorithms
FPGA
Array processor
High-level synthesis

A B S T R A C T

The genetic algorithm is a general purpose optimization metaheuristic for solving complex optimization pro-
blems. Because the algorithm usually requires a large number of iterations to evolve a population of solutions to
good final solutions, it normally exhibits long execution times, especially if running on low-performance con-
ventional processors. In this work, we present a scalable computing array to parallelize and accelerate the
execution of cellular GAs (cGAs). This is a variant of genetic algorithms which can conveniently exploit the
coarse-grain parallelism afforded by custom parallel processing. The proposed architecture targets Xilinx FPGAs
and was implemented as an auxiliary processor of an embedded soft-core CPU (MicroBlaze). To facilitate the
customization for different optimization problems, a high-level synthesis design flow is proposed where the
problem-dependent operations are specified in C++ and synthesised to custom hardware, thus demanding of
the programmer only minimal knowledge of low-level digital design for FPGAs. To demonstrate the efficiency of
the array processor architecture and the effectiveness of the design methodology, the development of a hardware
solver for the minimum energy broadcast problem in wireless ad hoc networks is employed as a use case.
Implementation results for a Virtex-6 FPGA show significant speedups, especially when comparing to embedded
processors used in current FPGA devices.

1. Introduction

Genetic algorithms (GAs) are optimization procedures inspired by
the principles of evolution of living species, like genetics and natural
selection. These algorithms implement heuristic search procedures in
huge and complex solution spaces, mimicking the way living organisms
evolve through generations by combining their genetic material, while
promoting the survival of the best adapted to the environment. The
organisms and their genetic information represent solutions of an op-
timization problem, the evolution of those solutions imitates re-
production by combining genetic information from different in-
dividuals, and the ability of the newborns to survive is dictated by an
objective function specific to each problem.

The algorithm has become a widely accepted search metaheuristic
as it does not depend on any particular characteristic of an optimization
problem. Besides, complex NP-hard optimization problems with huge
solutions space can only be tackled with metaheuristic search proce-
dures to find good, although sub-optimal, solutions. Several practical
applications have been addressed with genetic algorithms, like clus-
tering in data mining and bio-informatics [1], path planning for au-
tonomous navigation [2], antenna design [3], or energy minimization

in wireless ad-hoc networks [4].
The genetic algorithm establishes only the genetic-like evolution

process that must be followed to evolve and evaluate a population of
solutions. The key to success when implementing the algorithm for a
new optimization problem is determined by the way the solutions are
encoded and combined to generate new solutions, and also the method
to efficiently evaluate an objective function (or fitness) that guides the
evolutionary process towards good solutions. These are thus very pro-
blem-specific operations and, in general, the encoding of solutions can
be far more complex than just binary strings usually considered in basic
implementations of genetic algorithms. In addition, the process of
combining the data encoding of two solutions (the parents) to create a
new solution (the child) may be far more complex than just joining
parts of the solution data from the parents and may require problem-
specific processing tasks to preserve the feasibility of solutions.

Although GAs can effectively explore huge solution spaces by only
examining a small fraction of it, the ability to converge to good solu-
tions relies on the creation of large numbers of solutions (or generations)
through the repeated application of the simulated evolutionary process.
This usually translates into long execution times, which can constrain
the practical utilization of this metaheuristic, especially if used under

https://doi.org/10.1016/j.micpro.2018.01.006
Received 30 December 2015; Received in revised form 6 September 2017; Accepted 29 January 2018

⁎ Corresponding author.
E-mail addresses: pedro.vieira.santos@fe.up.pt, dee07008@fe.up.pt (P.V. dos Santos), jca@fe.up.pt (J.C. Alves), jcf@fe.up.pt (J.C. Ferreira).

Microprocessors and Microsystems 58 (2018) 1–12

Available online 31 January 2018
0141-9331/ © 2018 Published by Elsevier B.V.

T

http://www.sciencedirect.com/science/journal/01419331
https://www.elsevier.com/locate/micpro
https://doi.org/10.1016/j.micpro.2018.01.006
https://doi.org/10.1016/j.micpro.2018.01.006
mailto:pedro.vieira.santos@fe.up.pt
mailto:dee07008@fe.up.pt
mailto:jca@fe.up.pt
mailto:jcf@fe.up.pt
https://doi.org/10.1016/j.micpro.2018.01.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2018.01.006&domain=pdf


tight timing constraints or when running in embedded platforms with
limited computing power.

In this work we have developed a scalable framework to support the
implementation of custom computing machines in field-programmable
gate arrays devices (FPGAs) for accelerating the execution of genetic
algorithms. To exploit features found in modern FPGA devices, namely
blocks of dual-port RAM, and allow the parallelization of the algorithm,
we have addressed a particular category of genetic algorithm called
cellular. This allows spreading the set of solutions under evolution (the
population) over several independent memories, shared by an array of
identical processing elements that concurrently implement the genetic
evolution on partially overlapping sets of solutions. As a result, the
performance of the computing array is almost directly proportional to
the number of processing elements.

The developed computing framework provides an array of custom-
designed problem-specific processing elements (PE) connected to local
memory blocks shared among the PEs. To facilitate the implementation
of the processing elements, a high-level synthesis design flow is pro-
posed, where all the problem-specific operations are specified in syn-
thesizable C++ with the help of a generic template and a library of
common functions.

To demonstrate the effectiveness of the proposed computing array
and design methodology, we present in this paper the design process
and implementation results for an optimization problem in wireless
radio networks: the minimum energy broadcast problem. This use case
provides a realistic scenario where an embedded system might be re-
quired to run a genetic algorithm multiple times, as the wireless sensor
network topology may change frequently because the nodes are mobile
sensor devices. This is an example where it would be desirable to solve
this optimization problem in embedded computing platforms instead of
using desktop or higher performance computers. The cellular genetic
array was successfully implemented in a Virtex-6 FPGA and exhibit
relevant global speedups between 6 and 900× , when compared to
software implementations running in embedded processors (ARM
Cortex A9 and MicroBlaze).

The rest of the paper is organized as follows. Section 2 presents a
brief introduction to genetic algorithms and reviews related works on
custom hardware architectures for accelerating genetic algorithms. In
Section 3 the cellular genetic algorithm processor (cGAP) is presented,
together with the design flow based on high-level synthesis. The
minimum energy broadcast (MEB) problem is introduced in Section 4,
including the presentation of the variant of a genetic algorithm im-
plemented and details of the mechanisms to encode and evolve the
solutions. The hardware implementation and results are discussed in
Section 5 and the paper concludes with Section 6, including proposals
for further developments.

2. Related work

2.1. The genetic algorithm

The genetic algorithm (GA) is a population-based metaheuristic
where a set of feasible solutions of the optimization problem to be
solved, goes through an evolutionary process inspired in the biological
evolution of living species [5]. The algorithm starts with a random
initial population P and proceeds by executing an iterative process
where genetic-inspired operations are repeatedly applied (Fig. 1).

First, a selection of solutions in P is performed to designate a set of
solutions that will undergo some transformations to create new solu-
tions. The selected solutions are normally called parents and are com-
bined (usually in pairs) to generate new ones through a crossover op-
eration that combines information from both parents. Then, the new
solutions (children) may suffer a mutation operation that induces small
changes to them. The generated solutions P′ are then evaluated by a
fitness function and the population for the next generation is elected
among the solutions in P and P′, according to some replacement

strategy that takes into account the fitness values. This mechanism is
the key of the iterative process as it promotes the evolution towards a
better population. This process is repeated and the algorithm stops
when a given criterion is met, for example, when a certain number of
generations is generated without improvement of the fitness function.

While most implementations of genetic algorithms use a single po-
pulation and a global selection procedure (called panmictic), the de-
centralized genetic algorithm splits the whole population into sets of
solutions, or sub-populations, that evolve autonomously (Fig. 2). To
promote the propagation of the genetic information throughout the
whole population, the distributed GA periodically forces solutions to be
moved between sub-populations. In the cellular GA the solutions are
distributed along a regular grid and one solution can only interact with
the solutions within a certain neighbourhood, thus creating partially
overlapping sub-populations. The cellular genetic algorithm used in this
work belongs to this category and the decentralization of the whole
population into partially overlapping sub-populations in a key factor for
exploiting the coarse-grain parallelism afforded by the proposed pro-
cessor array architecture.

2.2. Hardware implementations of GAs

A continuous research activity has been carried out mainly over the
last 20 years to implement custom machines for accelerating the ex-
ecution of genetic algorithms by exploiting the potential of custom
computing using FPGA devices. Several attempts have been made to
build a generic accelerator engine for genetic algorithms, only accel-
erating the genetic operators and working on binary encodings of the
solutions [6–8]. However, it is often the case that a GA requires a
special and more complex representation of solutions, besides the basic
binary codification, as for example to encode a valid paths in a graph.
Additionally, some optimization problems may also require the appli-
cation of specific procedures to avoid unfeasible solutions that may be
generated by the application of the genetic operators. Also, the fitness
function is always specific of each optimization problem and therefore
cannot be efficiently handled by a general purpose GA accelerator.

Most of the works target the panmictic GA. Two different ap-
proaches can be used, depending on the way the population is evolved
along the iterative process. The generational GA replaces the whole
population in each iteration and can thus exploit the operation of
several units working in parallel, accessing the whole population and
generating new solutions [9,10]. However, memory access bandwidth
may introduce an important bottleneck when various concurrent pro-
cessing nodes must compete for the access to a single population
memory. Alternatively to the generational GA, the steady-state GA only
creates a new solution per iteration. Although the operations of this
variant of the algorithm cannot be parallelized as in the generational
GA, this approach has led to the proposal of efficient pipelined archi-
tectures [7,11,12].

Contrasting to the panmictic GA, in a decentralized GA the whole
set of solutions is organized into sub-populations that can evolve con-
currently, although a mechanism must exist to ensure some degree of
interaction among the sub-populations. As referred before, this can be
accomplished by periodically migrating solutions among the sub-po-
pulations, as in the distributed GA, or by using partially overlapping
sub-populations, as in the cellular GA [13]. These variants of the ge-
netic algorithm are thus the most promising for hardware acceleration,
because the heuristic search procedure can be implemented as a set of
concurrent processes, each one evolving its own local pool of solutions.
This strategy has been adopted by various authors, presenting results
that clearly show the potential of acceleration of FPGA-based custom
implementation of decentralized genetic algorithms.

Table 1 summarizes the main characteristics of relevant works ad-
dressing the implementation of custom hardware accelerators for ge-
netic algorithms. It is worth noting that a comparison between different
works is not straightforward. Not only the optimization problems

P.V. dos Santos et al. Microprocessors and Microsystems 58 (2018) 1–12

2



Download English Version:

https://daneshyari.com/en/article/6885900

Download Persian Version:

https://daneshyari.com/article/6885900

Daneshyari.com

https://daneshyari.com/en/article/6885900
https://daneshyari.com/article/6885900
https://daneshyari.com

