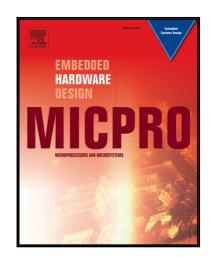
Accepted Manuscript

A Scalable and Adaptable Hardware NoC-Based Self Organizing Map


Mehdi Abadi, Slavisa Jovanovic, Khaled Ben Khalifa, Serge Weber, Mohammed Hédi Bedoui

PII: S0141-9331(17)30191-6 DOI: 10.1016/j.micpro.2017.12.007

Reference: MICPRO 2646

To appear in: *Microprocessors and Microsystems*

Received date: 31 March 2017
Revised date: 26 October 2017
Accepted date: 14 December 2017

Please cite this article as: Mehdi Abadi, Slavisa Jovanovic, Khaled Ben Khalifa, Serge Weber, Mohammed Hédi Bedoui, A Scalable and Adaptable Hardware NoC-Based Self Organizing Map, *Microprocessors and Microsystems* (2017), doi: 10.1016/j.micpro.2017.12.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A Scalable and Adaptable Hardware NoC-Based Self Organizing Map

Mehdi Abadi^{a,b,1}, Slavisa Jovanovic^{a,*}, Khaled Ben Khalifa^b, Serge Weber^a, Mohammed Hédi Bedoui^b

^a UMR 7198, Institut Jean Lamour, Université de Lorraine, Nancy, France ^b Laboratoire de Technologie et Imagerie Médicale, Université de Monastir, Monastir, Tunisia

Abstract

Due to their ability to reduce the size of high-dimensional input data, Selforganizing maps (SOMs) can be employed as data quantizers. The widely used software implementations of SOM enjoy flexibility and adaptability, usually to the detriment of performances, which limits their use in real time applications. On the contrary, the hardware counterparts of SOMs exploit the inherent parallelism of hardware to boost the overall performances, but generally lack adaptability without considerable design efforts. To benefit from both, the flexibility of software and performances of hardware SOM implementations, unconventional design approaches of SOMs should be used. In this work, a scalable and adaptable hardware implementation of a SOM network is presented. The proposed architecture allows to dynamically extend the SOM operation from a smaller to a larger map only by (re-)configuring the parameters of each neuron. The gained scalability is obtained by decoupling the computation layer composed of neurons, from the communication one, used to provide data exchange mechanisms between neurons. The proposed SOM architecture is also validated through simulation on variable-sized SOM networks applied to image

Email addresses: mehdi.abadi@univ-lorraine.fr (Mehdi Abadi),

slavisa.jovanovic@univ-lorraine.fr (Slavisa Jovanovic), serge.weber@univ-lorraine.fr (Serge Weber), slavisa.jovanovic@univ-lorraine.fr (Mohammed Hédi Bedoui)

¹Ecole Nationale d'Ingénieur de Sousse, Université de Sousse, Sousse, Tunisia

 $^{{}^{\}dot{\alpha}}\text{This}$ work was supported by the PHC-UTIQUE 17G1423 Research program.

^{*}Corresponding author

Download English Version:

https://daneshyari.com/en/article/6885904

Download Persian Version:

https://daneshyari.com/article/6885904

<u>Daneshyari.com</u>