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A B S T R A C T

The fused-multiply-add (FMA) instruction is a common instruction in RISC processors since 1990. A 3-stage, 8-
level pipelined, dual-precision FMA is proposed here that can perform operations either at one double precision
(SISD) or at two single precision in parallel (SIMD). The 53-bit mantissa-multiplier (MM) is optimally segmented
by Karatsuba–Offman (KO) algorithm such that both modes can be performed. The 6-stage pipelined MM uses
only 6 of 10 multipliers and 13 of 33 adder/subtractors in SIMD. Thus hardware area of the proposed MM is
reduced by 23.82% and throughput is maintained to be 923M samples/s. The arithmetic operational units in the
data path are shared among the modes by having four data rearrangement units (DRU) which rearranges the
data systematically at the input, the outputs of MM and the final output. Though these DRUs bring some
hardware overhead, the resulting architecture is modular and uniform for both modes of computation. The
proposed FMA has been implemented using TSMC 1P6M CMOS 130 nm library and takes 48% less overall area
and consumes 49% less power at 308.7 MHz compared to previous results. The area-delay-product (ADP),
0.48×10−15 shows that the area optimization by proposed KO based MM can also keep the computation time
as 3.24 ns.

1. Introduction

Modern multimedia processor instruction set architectures have
novel instructions to meet the high accuracy and fast computation
needs. One of such is fused multiply-add (FMA). A fast FMA can im-
prove the performance of computations involving dot product calcu-
lation, matrix multiplication and polynomial evaluation. This executes
the expression (A × B) + C, with a single rounding, where the oper-
ands are in IEEE-754 standard floating-point representation. A multiply
and accumulate (MAC) unit can be used to compute the expression. But
it has rounding operation after multiply also after addition. It can also
be computed using FMA, which combines addition and multiplication
as a single computation step and hence rounding is required only once.
This in turn improves accuracy of the computation with FMA.

The FMA unit was first proposed by Montoye et al. [1] in the IBM
RISC System/6000. Since then, FMA has been used as a key feature in
many processors as mentioned by several authors [2–5]. The FMA has
been implemented as an instruction set in architectures like CELL and
PowerPC of IBM, ARMv7-A and ARMv7-R from ARM, Piledriver and
Bulldozer of AMD and in Haswell of Intel as mentioned by Wait [6],
Shainer et al. [7] and Kurd [8].

A Three Path FMA and a Bridge FMA have been implemented in [9],
but there is a trade-off between area and speed in each of these and they
work only with double precision (DP). An improved version of FMA was
implemented in [10] which supports both single precision (SP) and
double precision (DP). It uses a modified dual path scheme to reduce
latency. Though the area consumed is higher than the conventional DP
FMA by 23%, the area overhead is justified by the increased throughput
in parallel computing of two sets of SP inputs and also the delay is
reduced by 13%. A mixed precision FMA has been implemented in [11],
in which A and B inputs can be of a particular precision (say SP) while
the input C and the result can be of another precision (say DP). The
FMA architecture proposed in [12] supports one DP or two SP in par-
allel with increased throughput. The delay and area are increased by
9% and 18% respectively than the conventional DP FMA in [10].

This paper proposes an architecture for a FMA which can accept
either one set of double precision inputs to give a double precision
output (SISD) or take two sets of single precision inputs to give two
single precision outputs concurrently (SIMD). Only one rounding is
done at the final stage after the normalization as done in the conven-
tional FMA unit.

The main contributions in this work are:
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• Data rearrangement units (DRUs) are used to rearrange the data
(inputs and outputs) and thus the proposed architecture for both
modes, SISD and SIMD is more regular.

• The area of mantissa multiplier is reduced comparably by suitably
designing KO based segmented multipliers and is reusable in both
modes.

• The optimal KO segmentation (word length of smaller multiplier,
associated adders and critical path) is done in such a manner that it
can accommodate both modes of computation and 6-level pipelining
provides the necessary timing requirements as in the [12] and [13].
Hence, this proposed architecture is area efficient without com-
promising the speed of computation.

• Other functional units such as Exponent process (EP), Alignment
shift (AS), Sign of result processing, Inverter, Adder, Leading-zero
anticipator (LZA), Normalizer and Exponent adjust (EA) are mod-
ified to process the proposed data arrangement in both modes of the
FMA.

The remaining sections of the paper are organized as follows:
Section 2 gives an idea of the working of a conventional FMA. In
Section 3, general architecture of the proposed dual mode FMA, design
of KO based MM, other arithmetic functional units and rearrangement
units are described. The hardware implementation of the proposed FMA
is explained, also the results are discussed in detail in Section 4 and the
final section forms the conclusion.

2. Conventional FMA

A binary Floating point number is represented as − × × +M( 1) 2S E P,
where S is sign bit; M is mantissa; E is exponent; P is bias for the given
precision (127 for SP and 1023 for DP). IEEE 754 standardises the
floating point representations for single and double precision as shown
in Fig. 1.

Conventionally the FMA architecture for performing the operation
Z= (A×B)±C has three stages as mentioned in [2,3] and [14]. The

operation is as follows:

1. First stage contains mantissa multiplier (MM), exponent processor
(EP) and alignment shifter (AS). MM gives product A×B in sum
and carry form, the EP finds the number of right shifts the AS has to
make to align C. Subsequently the C is inverted for effective sub-
traction.

2. Second stage contains a compound adder (CA), a sign-computation
unit (SCU) and a leading-zero anticipator (LZA). The CA sums up the
result of A×B (in sum and carry form) with aligned C. LZA gives
the number of shifts for normalization in the next step.

3. The final stage contains normalization and rounding unit (NRU) and
exponent adjustment unit (EAU). NRU normalizes the result of SCU
in stage 2 by shifting as per the result of LZA and formats the final
result to the required precision.

3. Architecture of proposed FMA unit

The proposed FMA architecture can process either one set of double
precision data in Single instruction single data (SISD) mode or two sets
of single precision data concurrently in single instruction multi data
(SIMD) mode as presented in [12] and [13]. Each input (A, B, C) and
output (Z) data can be accommodated on a single 64 bit register either
as double or single precision forms as illustrated in Fig. 2.

3.1. Rearrangement unit – inputs

The parts of the data are rearranged and hence the processing can be
completed in common arithmetic operational units. The details of re-
arrangement of sign, exponent and mantissa of A and B are presented in
Fig. 3. Sign is represented as 2-bits to accommodate two single preci-
sion data. Exponent is given as 18-bits for the input operands A, B and
C. The exponent processing unit (EPU) adds the exponents of A and B to
find A×B, and also determines the number of right shifts required by
the mantissa of C which has to be added later. Therefore, this
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Fig. 1. (a) IEEE-754 Representation - single precision. (b)
IEEE-754 Representation – double precision.
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Fig. 2. Arrangements of data in a 64 bit input/output register.
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Fig. 3. Rearrangement of sign (1 bit), exponent (18 bit) and mantissa (51 bit) for A and B.
The inputs A & B are rearranged for feeding in to the later stages of the architecture.
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