
Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

P4-To-VHDL: Automatic generation of high-speed input and output network
blocks

Pavel Benáček⁎,a, Viktor Puša, Hana Kubátováb, Tomáš Čejkaa
a CESNET a. l. e. Zikova 4, 160 00 Prague, Czech Republic
b Faculty of Information Technology Czech Technical University in Prague Thákurova 9, 160 00 Prague, Czech Republic

A R T I C L E I N F O

Keywords:
FPGA
High-level language
P4
100 Gbps
Parser
Deparser

A B S T R A C T

High-performance embedded architectures typically contain many stand-alone blocks which communicate and
exchange data; additionally a high-speed network interface is usually needed at the boundary of the system. The
software-based data processing is typically slow which leads to a need for hardware accelerated approaches. The
problem is getting harder if the supported protocol stack is rapidly changing. Such problem can be effectively
solved by the Field Programmable Gate Arrays and high-level synthesis which together provide a high degree of
generality. This approach has several advantages like fast development or possibility to enable the area of
packet-oriented communication to domain oriented experts. However, the typical disadvantage of this approach
is the insufficient performance of generated system from a high-level description. This can be a serious problem
in the case of a system which is required to process data at high packet rates. This work presents a generator of
high-speed input (Parser) and output (Deparser) network blocks from the P4 language which is designed for the
description of modern packet processing devices. The tool converts a P4 description to a synthesizable VHDL
code suitable for the FPGA implementation. We present design, analysis and experimental results of our gen-
erator. Our results show that the generated circuits are able to process 100 Gbps traffic with fairly complex
protocol structure at line rate on Xilinx Virtex-7 XCVH580T FPGA. The approach can be used not only in net-
working devices but also in other applications like packet processing engines in embedded cores because the P4
language is device and protocol independent.

1. Introduction

Embedded hardware is nowadays used in almost every advanced
technical system. Very typically, the embedded architecture contains
more processing cores which need to communicate and exchange data.
This communication can be inspired from the field of computer net-
works. Moreover, developers of NoC (Network on Chip) can reuse
knowledge from this area which leads to faster development of final
product. The number of computers and mobile devices is still rising
which leads to higher bandwidth utilization. There is also a require-
ment to analyze all data in real time which is quite complicated to fulfil
in pure software tools. Therefore, it is typical to embed the time-critical
parts of networking operations into hardware accelerators. The ad-
vantage of this approach is the performance and native parallelism of
hardware. However, development of networking hardware is quite
complicated discipline and it isn’t easy to meet all required parameters
like frequency, throughput or used resources. Very common are hard-
ware accelerators with FPGA chips because such solutions are flexible
and fast enough for processing of high-speed traffic even at speed of

100 Gbps.
From above description, we feel that it is quite complicated to find

an expert who understands the FPGA technology and domain-specific
problems (like computer network security, etc.). Therefore, high-level
languages (HLL) seem to be suitable for such developers because they
allow describing the hardware in simpler languages than VHDL or
Verilog. Unfortunately, this level of abstraction suffers from perfor-
mance penalty and there is a need to have a tool which is capable to
meet a trade-off between the level of abstraction and reached perfor-
mance.

P4: Programming Protocol-independent Packet Processors [1,2] is
novel and open source language which seems to be suitable for the
description of modern network devices. It also evades the typical pro-
blem of classical network approaches, such as a fixed set of supported
protocols, fixed set of actions, and so on. The main idea of this language
is the capability to map a P4 program onto computational resources like
FPGAs, graphics cards or programmable switches. We contribute to-
wards the vision of P4 by designing and evaluating a generator of high-
speed packet parser and deparser suitable for FPGAs. The generator’s

http://dx.doi.org/10.1016/j.micpro.2017.10.012
Received 12 May 2016; Received in revised form 3 October 2016; Accepted 27 October 2017

⁎ Corresponding author.
E-mail addresses: benacek@cesnet.cz (P. Benáček), pus@cesnet.cz (V. Puš), hana.kubatova@fit.cvut.cz (H. Kubátová), cejkat@cesnet.cz (T. Čejka).

Microprocessors and Microsystems 56 (2018) 22–33

Available online 31 October 2017
0141-9331/ © 2017 Elsevier B.V. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/01419331
https://www.elsevier.com/locate/micpro
http://dx.doi.org/10.1016/j.micpro.2017.10.012
http://dx.doi.org/10.1016/j.micpro.2017.10.012
mailto:benacek@cesnet.cz
mailto:pus@cesnet.cz
mailto:hana.kubatova@fit.cvut.cz
mailto:cejkat@cesnet.cz
http://dx.doi.org/10.1016/j.micpro.2017.10.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2017.10.012&domain=pdf


output is a synthesizable VHDL code that performs packet parsing and
deparsing as defined by the P4 program. Internal structure of both
modules is inspired by hand-written modules which were developed by
a skilled HDL programmer.

This paper introduces results of our continuing research which was
initially published in [3,4]. In this paper, we provide details of output
network block (Deparser), the detailed description of Parser-Deparser
approach and analysis of three use cases. The rest of the paper is or-
ganized as follows: Section 2 provides more details about the P4 lan-
guage aspects that are relevant for this work. Section 3 introduces the
basic ideas of Parser-Deparser approach and compares our work to
conventional packet editor. Section 3.1 provides details about Parser’s
architecture and transformation algorithm from P4 to VHDL. The sec-
tion also provides a description of available optimizations. Section 3.2
provides details about Deparser’s architecture and transformation from
P4 to VHDL. Section 4 provides results of our generator and compares
them to a hand-written parser. The section also provides results for
generated Deparsers which are supporting the same set of protocols.
Section 5 presents other papers related to our work. Finally, Section 6
concludes the paper with important outcomes.

2. P4 Language

P4: Programming Protocol-independent Packet Processors [1,2] is a
high-level, platform-agnostic language. It represents a recent con-
tribution to the broader idea of Software-Defined Networking (SDN)
and its ecosystem. The main purpose of P4 is to provide a way to define
packet processing functionality of network devices, paying attention to
reconfigurability in the field, protocol independence and target (plat-
form) independence. Using relatively simple syntax, P4 allows to define
five basic aspects of packet processing:

• Header Formats describe protocol headers recognized by the de-
vice.

• Packet Parser describes the (conceptual) state machine used to
traverse packet headers from start to end, extracting field values as
it goes.

• Table Specification defines how the extracted header fields are
matched in possibly multiple lookup tables (e.g., exact match, prefix
match, range search).

• Action Specification defines compound actions that may be exe-
cuted for packets.

• Control Program puts all of the above together, defining the control
flow mainly among the tables.

All proposed aspects have to be defined for each network device like
routers, switches, monitoring probes, etc. The first aspect, Header
Formats, is used for the definition of all supported protocol headers.
The P4 language defines the following syntax:

The definition simply lists fields of the packet header and their
width in bits. The example above shows a protocol with static header
structure, where the header length is the sum of lengths of all fields.
This can’t be done for protocols with variable header length. The P4
language solves this situation by the length statement definition in the
form of an expression which uses protocol fields (from the Header
Format definition) to compute the header length. Header Format defi-
nition with variable length may look like this:

Packet Parser definition constructs a parse graph using the Header
Format definition, for example:

The provided example uses switch and extract statements. The
extract statement instructs the parser to examine input packets and
look for data defined in the header. Parsed data is then used in the
switch statement to determine the next state (protocol) to process.
There are also situations when we don’t want to use the whole value
from the protocol field. The P4 language solves this by the mask
statement which is used in the case statement together with a mask
value. In our example, the mask statement instructs the P4 parser to
take the ethertype field, perform logical and operation between the
value and mask. Finally, the result is compared to 0xA100.

In our approach, we want to use first two aspects (Header Formats
and Packet Parser definition) for automatic generation process. The
remaining P4’s aspects (definition of tables, actions and control pro-
gram) define a more dynamic and general transformation process. The
example of such transformation process can be VLAN or MPLS tagging,
decrementation of the TTL value, insertion of new protocol header, etc.
The next section describes the structure of the device in detail.

3. Device structure

The basic idea of the Parser-Deparser approach was introduced by
Gibb in [5] and we adopted it into our approach. The generated device
consists of three basic modules. The first module, Parser, is used to
break the incoming network data into individual header fields. The
output of this module is a set of extracted fields and corresponding valid
bits. The valid bit is used for presence indication of extracted protocol
fields in the currently processed packet. All extracted protocol fields
and valid bits are passed to the second module, Transformation, which
implements the general transformation process (VLAN tagging or traffic
analysis for example). This block has to set a validity information for
each inserted/removed protocol and it has to filter out unused header
data (this data will not be used in Deparser). Finally, the last module,
Deparser, is used for the construction of network packet back from
incoming protocol headers and valid bits.

The brief architecture is shown in Fig. 1. The nearest comparable
solution is a conventional packet editor. The packet editor is a general
device which allows us to read or modify/insert bytes of the currently
processed packet. Therefore, we can use this device for usual network
operations like VLAN tagging, modification of protocol fields, removing
of unwanted protocols, and so on. However, the Parser-Deparser ap-
proach is more elegant and simpler. We will demonstrate the flexibility
of new approach on two common use cases — VLAN tagging and

P. Benáček et al. Microprocessors and Microsystems 56 (2018) 22–33

23



Download	English	Version:

https://daneshyari.com/en/article/6885929

Download	Persian	Version:

https://daneshyari.com/article/6885929

Daneshyari.com

https://daneshyari.com/en/article/6885929
https://daneshyari.com/article/6885929
https://daneshyari.com/

