Microprocessors and Microsystems 56 (2018) 144-156

Contents lists available at ScienceDirect

EMBEDDED
HARDWARE
DESIGN

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Accelerating the evolution of a systolic array-based evolvable hardware )

Check for

System updates

Javier Mora”, Eduardo de la Torre

Centre of Industrial Electronics, Universidad Politécnica de Madrid, Madrid, Spain

ARTICLE INFO ABSTRACT

Keywords: Evolvable hardware is a type of hardware that is able to adapt to different problems by going through a previous

FPGA training stage which uses an evolutionary algorithm to find an optimized configuration. This configuration can be

Evolvable hardware achieved through dynamic partial reconfiguration of an FPGA. Having a short time for the training stage is critical

Dynamic partial reconfiguration for the system to be able to adapt to changing conditions in real time. However, one of the problems of evolvable

g;/::;tilcozfgyalgonthm hardware based on dynamic partial reconfiguration is its long evolution time, mostly due to its slow re-

LUT configuration speed. This can make such systems unsuitable for applications which require adaptation in a few
seconds. Nevertheless, different reconfiguration and evolution techniques can substantially reduce the time
taken by an evolvable hardware system to evolve for a specific problem.

In this article, a system initially able to evolve in 8 minutes is optimized using multiple techniques (re-
configuration methodology, evolutionary algorithm optimization, and parallelization) so that it is able to obtain
similar results in less than 2 s, achieving a speedup of near 300 times. Extensive experimental results prove the
benefits of such techniques.

1. Introduction

Evolvable hardware (EH) systems are configurable hardware systems
which are able to adapt to different problems. Unlike classical system
design, where the designer decides or calculates the structure and
configuration of the system based on the problem specifications, EH
uses an evolutionary algorithm (EA) to tune its parameters or structure in
order to find the optimal configuration for a certain problem according
to a set of training samples.

These training samples are representative examples of the problem
that needs to be solved. For instance, a system whose purpose is to
remove a certain type of noise from an image stream would use a noisy
image as a training input and the same image without noise as a
training reference, and a system whose purpose is to perform edge
detection on an image would use a normal image as training input and
the result of applying a known edge detection algorithm (which can be
done in software) for the training reference. The EA would tune the
hardware so that the result of processing the training input with the EH
system is as similar as possible to the training reference. Once the EH
has been tuned for a specific problem, it is able to process actual input
for which the reference is unknown.

Obtaining a training input and reference can be done in several
ways. For example, the training input could be retrieved from the actual

* Corresponding author.

input of the system, and then processed using a known algorithm in
software in order to obtain the desired output (this process can be very
slow). Once finished, the obtained image will be used as training re-
ference together with the training input in an EA which will tune the EH
to emulate the work of the software. Once the EH has been tuned, it will
be able to perform a similar task to the software but with a speed which
is typically much higher. This way, the EH acts as a self-adaptive
hardware accelerator that mimics a software task.

The training input and reference for the case of noise removal can
also be obtained by getting a generic noise-free image as the training
reference, and adding a specific type of noise to it in order to obtain the
training input. However, this task needs knowledge of the type of noise
and images that will need to be filtered. Nevertheless, previous work
[1] shows that this can also be done by using the system input directly,
and relying on the random nature of noise and the non-locality of the
filter to use two noisy inputs as training input and reference (Fig. 1).

The evolution can be extrinsic or intrinsic, depending on whether the
candidate solutions are evaluated on a simulated model or on the EH
system itself. The advantage of intrinsic evolution is that it makes the
EH self-healing, as it is able to recover from faults in its fabric by
evolving in order to find alternative solutions where these faults have a
smaller effect, making the hardware fault tolerant.

Intrinsic evolution also removes the need to use a software

E-mail addresses: javier.morad@upm.es (J. Mora), eduardo.delatorre@upm.es (E. de la Torre).

https://doi.org/10.1016/j.micpro.2017.12.001

Received 24 June 2016; Received in revised form 7 November 2017; Accepted 5 December 2017

Available online 06 December 2017
0141-9331/ © 2017 Published by Elsevier B.V.


http://www.sciencedirect.com/science/journal/01419331
https://www.elsevier.com/locate/micpro
https://doi.org/10.1016/j.micpro.2017.12.001
https://doi.org/10.1016/j.micpro.2017.12.001
mailto:javier.morad@upm.es
mailto:eduardo.delatorre@upm.es
https://doi.org/10.1016/j.micpro.2017.12.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2017.12.001&domain=pdf

J. Mora, E. de la Torre

Fig. 1. Evolution without a noise-free reference. Left: training input. Center: training
reference. Right: evolution result. Both input and reference have a 50% of salt and pepper
noise.

simulation of the hardware in order to perform the evolution, so only
the EA itself needs to be run in software. Nevertheless, the EA can be
simple enough to run in an embedded processor next to the EH, or even
implemented purely in a specialized hardware module; therefore the
system can be implemented in a SoC, making it completely autonomous.

FPGAs are a very good platform for implementing EH, specially
those equipped with dynamic partial reconfiguration (DPR) capabilities.
DPR is a process through which the FPGA can autonomously re-
configure part of its logic while the rest continues operating. This can
be used to implement an EH system as a piecewise circuit composed by
multiple processing elements (PEs), each of which implements a simple
task, and whose functionality can be individually changed by replacing
it with a different PE using DPR.

A problem of DPR is that it is typically very slow, and is thus nor-
mally used only for coarse grain applications that are seldom re-
configured, as its intensive use in an EA would make the training times
excessively long. Nevertheless, implementations that accelerate the
reconfiguration by using hardware-accelerated reconfiguration engines
or reducing the amount of logic to be reconfigured exist [2,3], leading
to relatively fast reconfiguration times that take only a small fraction of
the total time used by the training stage.

During the training stage, the system is either inoperative or
working at suboptimal performance; therefore, it is desirable that the
time taken by this stage is as short as possible. Therefore, making the
training stage of DPR-based EH shorter can greatly increase the amount
of applications where such a system can be applied. This can be
achieved through the combination of three approaches:

e Reducing the number of candidate solutions that need to be
generated and evaluated by the EA until an adequate solution is
found.

e Reducing the reconfiguration time needed to implement a certain
solution.

e Reducing the evaluation time needed to test a certain solution once
it has been configured.

The time overhead taken by the software leading the EA is typically
small compared to the reconfiguration and evaluation times, specially
for simple EAs.

This article describes and analyzes multiple improvements and op-
timization techniques that have been applied to a pre-existing EH im-
plementation [4] in order to substantially reduce the total time needed
to evolve for a particular problem, some of which were already used in
[5]. By applying these techniques, the evolution time has been reduced
from 8 minutes to less than 2 seconds.

The rest of the article is organized as follows: Section 2 introduces
the state of the art and possible alternatives. Section 3 describes the
initial implementation of the system to be optimized. Section 4 de-
scribes the hardware improvements made on both the hardware ar-
chitecture and the reconfiguration engine with the aim of reducing both
reconfiguration and evaluation times, as well as reducing the resource
usage of the architecture. In Section 5, certain modifications to the
original EA are made in order to improve its efficiency, reducing the
number of candidate solutions generated and evaluated in order to

Microprocessors and Microsystems 56 (2018) 144-156

obtain good results. Section 6 takes advantage of the reduction in re-
source usage performed in Section 4 to parallelize the EA across mul-
tiple evaluation units, which further decreases the evaluation time.
Finally, Section 7 shows the conclusions of the article and summarizes
the improvements achieved in each section.

This article is structured in an incremental approach, where each
improvement is analyzed before moving on to the next one, since most
of the times an improvement is justified by the results of the previous
one. There is no separate section for the results; instead, these are
shown at the end of each subsection.

2. Technical background and previous work

Common EH-based processing systems consist of a large number of
basic processing units, known as processing elements (PEs), which are
interconnected in a specific manner. Each of these PEs has a certain
number of inputs coming from the system input or from other PEs,
implements a specific operation on the data it receives from these in-
puts, and sends the processed result to other PEs, typically registering
the result in order to create a pipelined data processing architecture.
The mission of the EA is to determine which operation will be per-
formed by each PE and how the PEs will be interconnected; these
parameters constitute a specific candidate solution.

This section describes different topologies frequently used in EH, as
well as multiple common techniques for changing its configuration.

2.1. Interconnection topologies

Given that allowing every PE to get its inputs from any other pos-
sible PE in the system would lead to excessively complex routing (which
is generally bad for FPGA design) and to having excessively big mul-
tiplexers at the inputs of the PEs, the way in which PEs can interconnect
is usually restricted so that only a few possible interconnections are
allowed.

One of these interconnection topologies is the Cartesian genetic
programming (CGP) [6], which consists of a series of PEs arranged in
columns, as seen in Fig. 2. Each of these PEs can take data from the
primary input and the columns to the left, and usually implements a
stateless simple function (typically 1-bit logic gates). In order to further
simplify the hardware implementation in terms of multiplexers and
routing, as well as the search space for the EA, the number of inputs
available to a certain PE can be constrained to a maximum number of
columns to the left (typically one column, to avoid large multiplexers).

Although PEs in CGP typically implement 1-bit logic gates as their
processing function [6,7], authors have shown that this is inefficient for
evolvable image filters, and replace these basic logic functions with
more complex functions such as 8-bit adders [8], which do not need to
yield an exact result but can be simplified approximations [3]. Other
authors go one step further and create complex PEs on the fly by
combining primitive functions, a technique known as embedded CGP
(ECGP) [9].

Fig. 2. Example of a 3 X 3 CGP topology with 3 primary inputs and 1 primary output.
Each PE in this example has 1 output and 2 inputs, from either the system input or a PE in
the previous column.



Download English Version:

https://daneshyari.com/en/article/6885960

Download Persian Version:

https://daneshyari.com/article/6885960

Daneshyari.com


https://daneshyari.com/en/article/6885960
https://daneshyari.com/article/6885960
https://daneshyari.com

