
Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Novel architectural space exploration environment for multi-FPGA based
prototyping systems

Umer Farooq⁎,a, Roselyne Chotin-Avotb, Moazam Azeemb, Maminionja Ravosonb, Habib Mehrezb

a Electrical and Computer Engineering Department, Dhofar University, Salalah, Oman
b Sorbonne Universites, UPMC Univ, Paris 06, CNRS, LIP6, Paris, France

A R T I C L E I N F O

Keywords:
Multi FPGA-based prototyping
Exploration environment
Inter-FPGA routing
Debugging

A B S T R A C T

Prototyping of complex digital systems using multi-FPGA platforms offers several key advantages over other
prototyping techniques. These advantages include higher execution speed, lower cost, and real world testing
experience. The quality of a prototyped design, however, is adversely affected by nonexistence of multi-FPGA
exploration environments. This work presents a novel, generalized exploration environment for multi-FPGA
platforms that gives end-to-end exploration experience. For experimentation purpose, ten large benchmarks are
generated, synthesized, and partitioned using a combination of locally developed and commercial tools. FPGA
board exploration is then performed through locally developed timing-driven inter-FPGA routing tool where five
FPGA boards are used and for each board, four different inter-FPGA track combinations are explored. For ex-
perimentation, number of FPGAs on board are varied from two to six and impact of this variation is observed on
the frequency of prototyped design. Experimental results show that FPGA boards with inter-FPGA tracks cor-
responding closely to cut net requirement of partitioned benchmarks give, on average, best frequency results.
Moreover, FPGA boards having higher number of FPGAs give, on average, better frequency results as compared
to boards having smaller number of FPGAs. Furthermore, a comparison between timing-driven and routability-
driven inter-FPGA routing approaches shows that former approach requires, on average, 46% less execution time
than the later while giving same frequency results. Finally, validation of proposed environment is also performed
through in-circuit verification of sample benchmarks on a stack of FPGA boards.

1. Introduction

Modern day System-on-Chip (SoC) designs have enormous compu-
tation capability. Today, a medium sized SoC houses multi-million logic
gates and it has the computation capability that dwarfs even the super
computers of few years back [1]. This advancement in computation
capability and performance, however, has come at the cost of complex
and expensive design process of new digital systems. Ever decreasing
product life cycle and faster time-to-market constraints further increase
the design pressure and a fast, efficient process is required to ensure
smooth design-to-silicon transition. Today, the design process of an
Application Specific Integrated Circuit (ASIC) takes about two-three
years to role out first prototype while requiring hundreds of thousands
of dollars in investment [2,3]. Continuous miniaturization of processing
technology metrics further leaves an adverse effect on an already weak
reliability index of final rolled out design. This makes pre-silicon ver-
ification an important step in the design process of a digital system. As
stated in [2], design verification step takes around 70% of total time
and around 80% of total design cost. The reason for such a huge effort

on verification is that it can eventually save the company from loss both
in terms of money and reputation [4,5].

Several techniques are used for pre-silicon functional verification of
digital systems among which simulation, emulation, and prototyping
based verification methods are the most popular [6]. Each of these
techniques has its pros and cons. For example, simulation based ver-
ification offers complete visibility of the design with quick set-up time
and low price. Different market leaders offer simulation based plat-
forms like Cadence Incisive [7], Mentor Graphics Modelsim [8], Sy-
nopsys VCS [9]. The execution speed of simulators is, however, limited
(∼ 1kHz) and run time of complex designs can span several weeks.
Emulators, on the other hand, are faster as compared to simulators and
offer execution speed in MHz range (1∼ 2MHz). They also offer pro-
found visibility into the Register Transfer Level (RTL) description of the
design with large logic capacity and complete debugging ability. Three
emulator platforms offered by Electronic Design Automation (EDA)
vendors are Cadence Palladium Emulator [10], Synopsys EVE Zebu
Emulator [11], and Mentor Graphics Veloce Emulation systems [12].
Although emulators offer significant advantages over simulation, their

https://doi.org/10.1016/j.micpro.2017.12.006
Received 4 January 2017; Received in revised form 5 October 2017; Accepted 11 December 2017

⁎ Corresponding author.
E-mail address: ufarooq@du.edu.om (U. Farooq).

Microprocessors and Microsystems 56 (2018) 169–183

Available online 12 December 2017
0141-9331/ © 2017 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01419331
https://www.elsevier.com/locate/micpro
https://doi.org/10.1016/j.micpro.2017.12.006
https://doi.org/10.1016/j.micpro.2017.12.006
mailto:ufarooq@du.edu.om
https://doi.org/10.1016/j.micpro.2017.12.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2017.12.006&domain=pdf


high price tags and prolonged initial set-up time make them un-
attractive for systems where price and time-to-market are principal
constraints. Finally, we have Field Programmable Gate Array (FPGA)
based prototyping platforms which execute the design at cycle-accu-
rate, bit-accurate level and run it at significantly higher speed
(∼ 15MHz). Multi FPGA-based platforms offer almost similar design
capacity as emulators while offering better portability. Unique to FPGA-
based prototyping is its real world testing experience with actual ex-
ternal interfaces. Although FPGA-based prototyping platforms are in-
expensive as compared to emulators, they offer poor system visibility
with comparable set-up time. A pictorial comparison between three
verification techniques is shown in Fig. 1. It can be seen from this figure
that advantages like frugality, high performance, and real world testing
experience make FPGA-based prototyping most favored among three
verification techniques.

Present-day ASIC designs are quite large and logic requirement of
even a moderately complex ASIC design is multi-million logic gates.
Although contemporary FPGAs are efficient in terms of speed, their
capacity is outstripped by the requirements of ASIC design due to their
generalized and configurable nature [13]. Today, FPGAs are estimated
to be many times larger than their ASIC counterparts and for complex
ASIC designs, this area gap calls for multi-FPGA based prototyping
platforms. Prototyping of an ASIC design using multiple FPGAs is a
challenging task as it follows a complex back-end flow where a single
design is partitioned into multiple parts which are then implemented on
different FPGAs. These FPGAs are normally mounted on a single or
multiple boards and they are connected to each other through two-
point or multi-point physical tracks. The number of FPGAs in a multi-
FPGA prototyping platform depends upon the complexity of SoC/ASIC
design to be prototyped and it may vary from a few FPGAs [14] on a
single board to several dozen FPGAs on different FPGA boards [15].
When we consider back-end flow of multi-FPGA prototyping, the
quality of final prototyped design is severely affected by the caliber of
tools used. Back-end flow normally starts with the RTL description of a
design under test. The design is first synthesized and then it is parti-
tioned. In multi-FPGA prototyping, partitioning is a step that divides
the large design under consideration into multiple parts. The number of
parts is equal to the number of FPGAs on target multi-FPGA board and
size of each part is kept in such a way that it does not exceed the logic
capacity of target FPGA architecture. Principle optimization objective
of any partitioner is to divide the design in such a way that resultant
partitions have minimum possible inter-partition (i.e. inter-FPGA)
communication. Signals connected to different FPGAs on board are
termed as cut-nets of the design and their count is inversely related to
the performance of prototyped design.

Inter-FPGA routing is a step that follows partitioning of the design
under consideration. In this step, cut-nets of the partitioned design are
routed on the tracks of FPGA board in a Time Division Multiplexed

(TDM) manner [16]. In this technique, many cut-nets are combined
through a multiplexer which is connected to one of the I/Os of source
FPGA. The I/O of source FPGA is connected to an inter-FPGA routing
track which routes these cut-nets to the respective I/O of destination
FPGA where these cut-nets are demultiplexed. Multiplexer and de-
multiplexer use a fast clock to send the cut-nets over inter-FPGA tracks.
Normally, all the multiplexed data should be sent in one system clock
cycle whose length is a multiple of fast clock cycle. Maximum number
of cut-nets passing through a multiplexer is termed as multiplexing
ratio and it has an inverse relation with the execution speed of proto-
typed design. While performing inter-FPGA routing, cut-nets are either
routed directly (point-point) from source to destination FPGA or an
intermediate FPGA might be used as a hop if direct path between source
and destination FPGA does not exist. Addition of hops in the routing
path further deteriorates the execution speed of prototyped design. So,
the objective of inter-FPGA routing process is to optimize the multi-
plexing ratio while keeping number of hops to a minimum. This is a
challenging problem because the number of I/Os in newer generations
of FPGAs has not increased at the same rate as their logic capacity and
this trend has resulted in the scarcity of I/O resources of FPGAs. This
trend can be understood with the help of Table 1 where I/Os and logic
gates per I/O metrics for Altera’s Stratix and Xilinx’s Virtex family are
given. It can be seen from this table that newer generations of FPGAs in
both families have same or fewer I/Os while their logic capacity is in-
creased enormously. For example, almost 3000 logic gates are trying to
pass through a single I/O in case of Xilinx Virtex-4 and this number has
increased to almost 20,000 in case of Virtex-7. Similar trend holds for
Altera’s Stratix family as well. This trend shows that FPGA logic to I/O
ratio is worsening generation after generation and it calls for high
quality inter-FPGA routing tool that can improve the execution speed of
final prototyped design. Once inter-FPGA routing is done, partitions of
the design are placed and routed on the target FPGA and prototyping
process culminates with in-circuit verification of the design. Further
details on the multi-FPGA prototyping flow are given in the following
sections of the paper.

It is evident from the discussion presented above that prototyping of
SoC/ASIC designs using multi-FPGA platforms requires expertise both
at hardware and software level. From hardware perspective, there are
companies which sell hardware platforms only like Dinigroup [17].
There are also some solutions which cover parts of back-end flow for
multi-FPGA prototyping like Synopsys Protocompiler [18] that ac-
companies its HAPS platform [19], Auspy and Wasga partitioning tools
by Mentor Graphics [20,21]. However, the problem with aforemen-
tioned solutions is that either they provide only partial solu-
tions [20,21] or they are too constrained [18] and can only be used for
a specific hardware platform. In this work, we propose a novel back-end
flow for architecture space exploration of digital systems based on
multi-FPGA prototyping. The proposed flow is generic in nature and
starting from benchmark generation to in-circuit verification, it gives
end-to-end user experience. The flow starts with large, complex
benchmark generation through locally developed benchmark gen-
erator. The benchmarks are then synthesized and partitioned using
generic commercial tools. Later, inter-FPGA routing is performed on

Fig. 1. Comparison between different verification techniques.

Table 1
FPGA logic capacity to I/O ratio for different FPGAs.

FPGA Name No of I/Os Gates per I/O

Virtex 4 960 3000
Virtex 5 1200 2900
Virtex 6 1200 8000
Virtex 7 1200 20000
Stratix 2 1170 2000
Stratix 3 1120 4000
Stratix 4 1120 9500
Stratix 5 840 16000

U. Farooq et al. Microprocessors and Microsystems 56 (2018) 169–183

170



Download English Version:

https://daneshyari.com/en/article/6885966

Download Persian Version:

https://daneshyari.com/article/6885966

Daneshyari.com

https://daneshyari.com/en/article/6885966
https://daneshyari.com/article/6885966
https://daneshyari.com

