
Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Enhancing logic synthesis of switching lattices by generalized Shannon
decomposition methods

Anna Bernasconia, Valentina Ciriani⁎,b, Luca Frontinib, Valentino Liberalic, Gabriella Truccob,
Tiziano Villad

a Dipartimento di Informatica, Università di Pisa, Italy
bDipartimento di Informatica, Università degli Studi di Milano, Italy
c Dipartimento di Fisica Università degli Studi di Milano, Italy
d Dipartimento di Informatica, Università degli Studi di Verona, Italy

A R T I C L E I N F O

Keywords:
Logic synthesis for emerging technologies
Switching lattices
Generalized Shannon decomposition

A B S T R A C T

In this paper we propose a novel approach to the synthesis of minimal-sized lattices, based on the decomposition
of logic functions. Since the decomposition allows to obtain circuits with a smaller area, our idea is to decompose
the Boolean functions according to generalizations of the classical Shannon decomposition, then generate the
lattices for each component function, and finally implement the original function by a single composed lattice
obtained by gluing together appropriately the lattices of the component functions. In particular we study the two
decomposition schemes defining the bounded-level logic networks called P-circuits and EXOR-Projected Sums of
Products (EP-SOPs). Experimental results show that about 34% of our benchmarks achieve a smaller area when
implemented using the P-circuit decomposition for switching lattices, with an average gain of at least 25%, and
about 27% of our benchmarks achieve a smaller area when implemented using the EP-SOP decomposition, with
an average gain of at least 22%.

1. Introduction

A switching lattice is a two-dimensional lattice of four-terminal
switches linked to the four neighbors of a lattice cell, so that these are
either all connected, or disconnected. A Boolean function can be im-
plemented by a lattice associating each four-terminal switch to a
Boolean literal, so that if the literal takes the value 1 the corresponding
switch is ON and connected to its four neighbors, otherwise it is not
connected. The function evaluates to 1 if and only if there exists a
connected path between two opposing edges of the lattice, e.g., the top
and the bottom edges (see Fig. 1 for an example). The synthesis problem
on a lattice thus consists in finding an assignment of literals to switches
in order to implement a given target function with a lattice of minimal
size.

The idea of using regular two-dimensional arrays of switches to
implement Boolean functions is old and dates back to a seminal paper
by Akers in 1972 [1]. Recently, with the advent of a variety of emerging
nanoscale technologies based on regular arrays of switches, synthesis
methods targeting lattices of multi-terminal switches have found a re-
newed interest [2–4]. Consider for instance a nanowire array, where

each crosspoint is controlled by an input voltage. In this paper, we
consider crosspoints that behave like four-terminal switches controlled
by an input signal and therefore the proposed nanowire crossbar array
can be modeled as a lattice of four-terminal switches. Note that, in
general, crossbars can also be modeled by programmable contacts (see
for instance [5]). Nanowire crossbar arrays may offer substantial ad-
vantages over conventional CMOS when used to implement program-
mable architectures. Conventional implementations typically employ
SRAMs for programming crosspoints; other techniques have been sug-
gested for implementing programmable crosspoints such as bistable
switches that form memory cores, molecular switches and solid-elec-
trolyte nanoswitches (see [3] for more details and bibliographic refer-
ences).

In this paper we show how the cost of implementing a switching
lattice could be mitigated by applying Boolean function decomposition
techniques in lattice-based implementations. Decomposition of logic
functions is a widely studied field in multi-level logic; here we focus on
two particular decomposition methods that are based on different
generalizations of the classical Shannon decomposition and that give
rise to the families of bounded-level logic networks called P-circuits

https://doi.org/10.1016/j.micpro.2017.12.003
Received 13 January 2017; Received in revised form 24 November 2017; Accepted 7 December 2017

⁎ Corresponding author.
E-mail addresses: anna.bernasconi@unipi.it (A. Bernasconi), valentina.ciriani@unimi.it (V. Ciriani), luca.frontini@unimi.it (L. Frontini), valentino.liberali@unimi.it (V. Liberali),

gabriella.trucco@unimi.it (G. Trucco), tiziano.villa@univr.it (T. Villa).

Microprocessors and Microsystems 56 (2018) 193–203

Available online 11 December 2017
0141-9331/ © 2017 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01419331
https://www.elsevier.com/locate/micpro
https://doi.org/10.1016/j.micpro.2017.12.003
https://doi.org/10.1016/j.micpro.2017.12.003
mailto:anna.bernasconi@unipi.it
mailto:valentina.ciriani@unimi.it
mailto:luca.frontini@unimi.it
mailto:valentino.liberali@unimi.it
mailto:gabriella.trucco@unimi.it
mailto:tiziano.villa@univr.it
https://doi.org/10.1016/j.micpro.2017.12.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2017.12.003&domain=pdf

[6–9] and EXOR-Projected Sums of Products (EP-SOPs) [10–13]. These
two methods have been selected, among other known decomposition
techniques, mainly because Shannon-based decomposition methods
allow to keep the number of logic levels bounded, in addition to the fact
that they have been already exploited with good results in CMOS
technology.

In the framework of switching lattices synthesis, where the available
minimization tools are not yet as developed and mature as those
available for CMOS technology, reducing the synthesis of a target
Boolean function to the synthesis of smaller functions could represent a
very beneficial approach. This expectation has been confirmed by our
experimental results, which demonstrate that in about 35% of the
analyzed cases the synthesis of switching lattices based on a decom-
position of the logic function into smaller sub-functions allows to obtain
a smaller area in the final resulting lattice.

This paper is an extended version of the conference paper in [14],
where only the decomposition with P-circuits was described, and is
organized as follows. Preliminaries on switching lattices are reviewed
in Section 2, while P-circuits and EP-SOP forms are described in
Section 3. Section 4 shows how the proposed decomposition schemes
can be exploited for the synthesis of switching lattices. Section 5 pro-
vides the experimental results and Section 6 concludes the paper.

2. Switching lattices

In this section we briefly review some basic notions and results on
switching lattices [1,3,4].

A switching lattice is a two-dimensional array of four-terminal
switches. The four terminals of the switch link to the four neightbours
of a lattice cell, so that these are either all connected (when the switch
is ON), or disconnected (when the switch is OFF).

A Boolean function can be implemented by a lattice in terms of
connectivity across it:

• Each four-terminal switch is controlled by a Boolean literal;

• each switch may be also labelled with the constant 0, or 1;

• if the literal takes the value 1, the corresponding switch is connected
to its four neighbors, else it is not connected;

• the function evaluates to 1 if and only if there exists a connected
path between two opposing edges of the lattice, e.g., the top and the
bottom edges;

• input assignments that leave the edges unconnected correspond to
output 0.

For instance, the 3×3 network of switches in Fig. 1 (a) corresponds
to the lattice form depicted in Fig. 1 (b), which implements the function

= + +f x x x x x x x1 2 3 1 2 2 3. If we assign the values 1, 1, 0 to the variables
x1, x2, x3, respectively, we obtain paths of gray square connecting the
top and the bottom edges of the lattices (Fig. 1 (c)), indeed on this
assignment f evaluates to 1. On the contrary, the assignment

= = =x x x0, 0, 1,1 2 3 on which f evaluates to 0, does not define any
path from the top to the bottom edge (Fig. 1 (d)).

The synthesis problem on a lattice consists in finding an assignment
of literals to switches in order to implement a given target function with
a lattice of minimal size. The size is measured in terms of the number of
switches in the lattice.

A switching lattice can similarly be equipped with left edge to right
edge connectivity, so that a single lattice can implement two different
functions. This fact is exploited in [2,3] where the authors propose a
synthesis method for switching lattices simultaneously implementing a
function f according to the connectivity between the top and the bottom
plates, and its dual function fD according to the connectivity between
the left and the right plates. Recall that the dual of a Boolean function f
depending on n binary variables is the function fD such that

… = …f x x x f x x x(, , ,) (, , ,)n
D

n1 2 1 2 . This method produces lattices with a
size that grows linearly with the number of products in an irredundant
sum of product (SOP) representation of f, and consists of the following
steps:

1. Find an irredundant, or a minimal, SOP representation for f and fD:
= + + … +SOP f p p p() s1 2 and = + + …+SOP f q q q()D

r1 2 ;
2. form a r× s switching lattice and assign each product pj (1≤ j≤ s)

of SOP(f) to a column and each product qi (1≤ i≤ r) of SOP(fD) to a
row;

3. for all 1≤ i≤ r and all 1≤ j≤ s, assign to the switch on the lattice
site (i, j) one literal which is shared by qi and pj (the fact that f and fD

are duals guarantees that such a shared literal exists for all i and j).

This synthesis algorithm thus produces a lattice for f whose size
depends on the number of products in the irredundant SOP re-
presentations of f and fD, and it comes with the dual function im-
plemented for free. For instance, the lattice depicted in Fig. 1 has been
built according to this algorithm, and it implements both the function

= + +f x x x x x x x1 2 3 1 2 2 3 and its dual = + +f x x x x x x xD
1 2 3 1 2 2 3.

The time complexity of the algorithm is polynomial in the number
of products. However, the method does not always build lattices of
minimal size for every target function, since it ties the dimensions of the
lattices to the number of products in the SOP forms. In particular this
method is not effective for Boolean functions whose duals have a very
large number of products. Another reason that could explain the non-
minimality of the lattices produced in this way is that the algorithm
does not use Boolean constants as input, i.e., each switch in the lattice is
always controlled by a Boolean literal.

In [4], the authors proposed a different approach to the synthesis of
minimal-sized lattices, which is formulated as a satisfiability problem in
quantified Boolean logic and solved by quantified Boolean formula
solvers. This method uses the previous algorithm to find an upper
bound on the dimensions of the lattice. It then searches for successively
better implementations until either an optimal solution is found, or else
a preset time limit has been exceeded. Experimental results show how

Fig. 1. A four terminal switching network implementing the function
= + +f x x x x x x x1 2 3 1 2 2 3 (a); its corresponding lattice form (b); the lattice evaluated on the

assignments 1,1,0 (c) and 0, 0, 1 (d), with gray and white squares representing ON and
OFF switches, respectively.

A. Bernasconi et al. Microprocessors and Microsystems 56 (2018) 193–203

194

Download English Version:

https://daneshyari.com/en/article/6885972

Download Persian Version:

https://daneshyari.com/article/6885972

Daneshyari.com

https://daneshyari.com/en/article/6885972
https://daneshyari.com/article/6885972
https://daneshyari.com

