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a b s t r a c t

This work proposes a Spiking Neural Network, SNN, based on a nanoelectronic spiking neuron – as
building block – and a 2D-mesh network-on-chip, NoC— as interconnect architecture. The SNN obtained
from the NoC is an alternative for high density architectures, providing reconfigurability, high scalability
and low power consumption. A look-up table router was used to connect all units. Further on, the
eXclusive-OR, XOR, benchmark problemwas used to validate the functionality of the nanoelectronic SNN.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

For the last 50 years, MOS, Metal Oxide Semiconductor, has
been themain technology in electronic industry. A great advantage
of MOS transistors is that their physical dimensions can be easily
reduced [1]. Miniaturization is a tendency on electronic devices
due to many performance improvements that may be reached
through it. Nanoelectronics emerged as an alternative technology,
capable of providing very small scale devices. Nanoelectronic de-
vices, such as SET, Single-Electron Transistor, are ruled by quantum
principles [2,3]. This feature restrains charge transport to occur
through tunneling events. The current, then, consists of few elec-
trons [4]. Thus, SET has great current control which reduces power
dissipation [5]. High frequency operation, low power consumption
and scale make nanoelectronics a promising technology [6].

Artificial Neural Networks, ANNs, were developed aiming the
emulation of biological neural systems behavior. Some unique
features of the biological brain, such as high level of parallelism,
fault tolerance and great capability of data processing are desirable
in electronic circuits [7]. The large variety of applications illustrates
the success obtained by ANNs. They can be applied in financial
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predicting [8] and biomedical field [9], among others high complex
tasks [10,11].

In order to obtain a model closer to the biological neural sys-
tem, networks of spiking neurons began to be considered [12].
These networks interact through pulses and, therefore, are more
resembling to biological systems than traditional ANNs [13,14].
SNNs present potential for building highly dense, massively par-
allel and fully interconnected systems [7]. Such networks would
have great capability of data processing and, due to the high level
of parallelism, good fault tolerance [12]. SNNs are widely used
in the community of computational neuroscience [14]. However,
hardware implementation of a system with all those features is
challenging [12].

Highly dense systems must be, at some level, fault tolerant in
order to present reliability [12]. In order to build those robust cir-
cuits, researchers looked for a reconfigurableway of implementing
SNNs. In this sense, FPGAs seemed the obvious choice [15].

When the firsts FPGAswere introduced, in 1980, the goal was to
build large circuits with high performance [16]. On a summarized
description, a FPGA consists of various independent programmable
blocks which can be interconnected to create larger functions [17].
Despite the reconfigurable feature and the inherent parallelism,
FPGAs are not able to support the high density interconnection
of SNNs [12]. In fact, mapping SNNs using logic blocks limits the
number of neurons in the network, since these blocks are not
efficient regarding power consumption and scale [18]. Besides, the
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routing structure in FPGAs do not support the high number of
interconnections needed to build a dense SNN [19].

Shared wires interconnection was also considered to build
hardware implemented SNNs. Although the topology of a shared
wired seems a good choice to emulate the interconnection be-
tween neurons, this attempt also proved inefficient [7]. For a fully
interconnected network, the number of wires is proportional to
the product between the number of neurons of the presynaptic
layer and the number of neurons of the postsynaptic layer. Thus,
the occupied area grows exponentially, depending on the number
of neurons in the network [7]. It was clear at that time that a new
interconnection paradigm was needed. The search for a solution
capable of supporting high density of interconnection, presenting
good yield and scalability lead to Networks-on-Chip, NoCs [20].
NoCs are formed by interconnectionmatrices, processing elements
and routing elements. The routing element is able to reduce the
number of interconnections. Since a NoC is inherently redundant,
fault tolerance is also addressed by this paradigm [21].

Some implementations of SNNswith NoCs can be found in liter-
ature. With different neuron models, routing algorithms and NoC
architectures, examples such as EMBRACE, EMulating Biologically-
inspiRed ArChitectures in hardwarE [12], SpiNNaker [22] and
FACETS, Fast Analog Computing with Emergent Transient Scale
[23], can be mentioned. This work proposes the use of a single-
electron spiking neuronmodel. The SET neuronmodelmay provide
gain concerning scale and power consumption. For that reason, in
this work, the SET neuron model is the processing element of the
NoC, the routing element is implemented through a Look-Up Table,
LUT. In order to validate the network functionality, the eXclusive-
OR, XOR, benchmark problem was used [12,13].

This work can be regarded as a feasibility study concerning
the use of a SET neuron model as processing element in a NoC
architecture aiming the implementation of a SNN. This paper can
be considered as complimentary to existing work, since a SET
neuronmodel is applied as processing unit of a SNNmapped in a 2D
mesh topology. Besides, difficulties found during the deployment
of this work may be helpful to future research in the area.

This paper is divided as follows: Section 2 presents a brief
discussion concerning related works. Section 3 presents the main
points on implementing SNNs and some models of nanoelectronic
spiking neurons. Section 4 is dedicated to an introduction andmain
ideas concerning NoCs. Section 5 presents the processing unit of
the NoC used in this work. Section 6 details the routing unit used
in this work. Section 7 presents the simulation results. Section 8
presents somediscussions concerning the results. Finally, Section 9
is dedicated to the conclusions.

2. Related work

Neuromorphic computation applies Very Large Scale Integra-
tion, VLSI, systems to mimic neuro-biological structures present
in the mammalian nervous system [24]. Despite some criticism,
neuromorphic computation offers an appealing alternative beyond
the traditional von Neuman computer paradigm [14]. This section
discusses some proposals published on the last years concerning
SNNs.

Fidjeland et al. [25] proposed a platform for simulating Izhike-
vich model of spiking neurons [26]: NeMo. That platform uses
high parallel graphics processing units, GPUs, to improve its per-
formance. The management of spike transfer relies on an external
memory. This proposal made use of FPGAs in order to implement
the SNN.

FACETS project [23] uses the wafer-scale integration approach
in order to address the complex interconnection pattern in dense
networks. For this approach to be feasible, lowpower consumption
and fault tolerance are required. BrainScaleS [27], the successor

of FACETS, reported the implementation of 2400 analog neurons
through the use of switched capacitor technology and communi-
cating via an asynchronous event-driven bus.

SpiNNaker [28] is a hardware approach based on ARM9 cores,
communication is made through a 2D torus NoC. Each NoC node
is capable of simulate 1000 leaky-integrate-and-fire, LI&F, neu-
rons [29] based on traditional CMOS technology, each one with
1000 synapses inputs.

EMBRACE [12] proposes a compact hardware SNN architecture.
EMBRACE employs the partition of complex tasks into smaller
and simpler subtasks executed in distinct neural modules. This
paradigm is known as Modular Neural Network, MNN. The com-
munication is on-chip, based on a customized array of NoC routers.
The processing element of the NoC is a neural block, which can be
programmed to operate as a spiking neuron.

In 2014, IBM developed TrueNorth [30,31], a digital neuromor-
phic chip. The interconnection pattern is implemented via a 2D
mesh NoC and the neurocomputer is also based on traditional
CMOS technology.

In 2016, Sengupta et al. [32] proposed a hybrid spintronic-
CMOS implementation for a SNN. Themain purposewas to address
energy efficiency comparable to the human brain [33].

All works previously mentioned have one thing in common:
the usage of CMOS technology. However, the mismatch between
mechanisms involved in mammalian nervous system and MOS
transistors impose a limit in the capability of emulating biolog-
ical efficiency. This limit is specially strong concerning area and
power efficiency [32]. Using EMBRACE as main inspiration, this
paper proposes to employ a nanoelectronic SET neuron model to
address scale and power consumption problems. Interconnections
are implemented via a 2D mesh NoC. Further on, XOR benchmark
was chosen due to its wide use in artificial neural networks pro-
posals [12,13]. In this work, the results were obtained via transient
analysis using LTSpice IV.

It is worth mentioning, though, that the pulsed paradigm is
often considered in the implementation of logic gates [34,35].
Guerreiro et al. [36] described a spiking neuron capable of im-
plementing logic gates with simpler architectures, shorter learn-
ing periods and faster processing when compared to traditional
neurons. Regarding the comparison between SET and CMOS logic
gates, Pal et al. [34] studied the performance of both technologies,
the simulation results showed that SET gates consume less power
and are capable of faster information processing.

Next section presents some analysis concerning hardware im-
plementations of SNNs.

3. Hardware implementation of spiking neural networks

The processing capability and the fault tolerance of nervous
systems can be credited to two main characteristics: the high
number of processing units and the complex pattern of intercon-
nection [12]. The human brain has about 1010 neurons connected
through 1015 parallel branches [37].

SNNs can be defined simply as networks of spiking neu-
rons [13]. Since they are suitable for building dense and parallel
systems, researchers began to look at these networks asmore pow-
erful, computationally speaking, than traditional networks [12]. In
SNNs, the information is encoded through the timing of pulses, the
topology of the network and the synaptic weights [7].

In order to provide reasonable parallelism the SNN requires a
large number of neurons [12]. That feature made physical imple-
mentation and simulation of SNNs become a problem. Standard
simulation tools in regular computers are not able to simulate
high density networks. In fact, software implemented networks
become slower as the number of neurons grows [7]. Therefore, the
hardware approach replaced the software approach in many re-
searches [12]. It is worth mentioning that, although SNN software
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