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Abstract

The simulation of liquid–liquid extraction columns based on a droplet population balance approach provides a useful means for getting more
insight into the transient and the steady state behavior of such an extremely important unit operation. This numerical simulation is carried out
based on a recently developed algorithm for solving the population balance equation. The algorithm is implemented via a computer program
called liquid–liquid extraction column module (LLECMOD). The LLECMOD is designed in a flexible way that allows the user to define
the breakage and coalescence frequencies, droplet terminal velocity, and the other internal geometrical details of the column. The user input
dialog makes the LLECMOD a user-friendly program that enables the user to select the simulation parameters and functions in an easy way.
The program is reinforced by a parameter estimation package for the droplet coalescence models. In this work, a sample of small laboratory
and pilot plant simulations as compared to the experimental data is presented as carried out by the LLECMOD.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The simulation of chemical engineering processes is now
widely used to shed some light on the dynamic or steady
state performance as well as equipment scale up of many
types of unit operation equipment. This is because in most
cases the actual running of the equipment is very expen-
sive or sometimes prohibitive due to safety reasons even at
the laboratory scale. An important unit operation in chem-
ical engineering is liquid–liquid extraction that finds many
significant applications in mining, petroleum, food and phar-
maceutical industries[1]. The hydrodynamics as well as the
mass transfer in such unit operations is fundamentally influ-
enced by the behavior of the dispersed phase consisting of
populations of distributed rather than lumped characteristics
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in droplet phase space. Consequently, the natural framework
of modelling of such dispersed phase processes is based
on the population balance[2–4]. Although such modelling
framework is rich in the information it furnishes, it is still
expensive from a computational point of view since the full
population balance models are normally integral partial dif-
ferential equations (IPDE) of stretched type[5]. These IPDEs
have only a limited number of analytical solutions[6,7] that
are in most cases strongly simplified and hence are physically
unrealistic. Consequently, for realistic liquid–liquid extrac-
tion column (LLEC) simulation based on population balance
modelling, it is inevitable to seek numerical solutions. In such
cases the need for numerical solutions imposes two levels
of difficulties due to the convective, droplet breakage and
coalescence events occurring simultaneously. The convec-
tive process in dispersed phase systems is actually dominant
when compared to the axial dispersion and hence sharp front
profiles describing the number or volume concentration dis-
tributions are expected to develop along the spatial coordinate
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in the direction of flow. At the same time the evolution of these
distributions is governed by the breakage and coalescence
mechanisms involving linear integral expressions for break-
age and non-linear ones for droplet coalescence. These issues
are fully discussed by Attarakih et al.[6] where an efficient
numerical algorithm based on the generalized fixed-pivot
technique and the central differencing schemes of Kurganov
and Tadmor[8] is presented and extensively tested. For user-
friendly implementation of such a numerical algorithm we
introduce in this work the basics of a Windows-based com-
puter program called liquid–liquid extraction column module
(LLECMOD). The basic feature of this program is to pro-
vide the simulation of the hydrodynamics of LLECs based
on the population balance approach for both transient and
steady state through an interactive Windows input dialogue
as well as a parameter estimation package for droplet coales-
cence models based on small scale laboratory devices. The
LLECMOD is not restricted to a certain type of liquid–liquid
extraction column since it is built in the most general form
that allows the user to input the various droplet interaction
functions. These functions include droplet terminal veloc-
ity taking into account the swarm effect, slowing factor due
to column geometry, the breakage frequency and daughter
droplet distribution, the coalescence frequency and the axial
dispersion coefficients. A sample problem on basis of the per-
formance of a RDC column is given. However, other column
types can easily be treated, e.g. Kühni columns, when using
adapted correlations[9].

2. The mathematical model

The population balance equation (PBE) based on the num-
ber concentration distribution along the column can be for-
mulated as follows[4]:
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where n(v; z, t)δv = N(t, z)f (v)δv is the average number
concentration associated with droplets having a volume
betweenv ± δv at the time instantt and column heightz, N(t,
z) is the total number concentration andf (v) is the droplets
number density. The convective flux of these droplets along
the column of a constant cross-sectional area,Ac, is repre-
sented byAcFδv = AcUdnδv, whereUd is the velocity of
the dispersed phase relative to the column walls. The first
term on the right-hand side of Eq.(1) represents the axial
dispersion of the dispersed phase due to the non-ideal flow
in which a random movement of the fluid on the microscopic
level is superimposed on the main flow[10]. This is assumed
to follow Fick’s law with a dispersion coefficient,Dd, and
is distinguished from the forward mixing effect due to the
droplet velocity distribution that is taken into account by the
convective term[11]. The second term on the right-hand side

represents a number concentration rate of droplets entering
as a feed of volumetric flow rate,Qd, at the levelzd of the
column. The positive direction of flow coincides with the
dispersed phase flow fromzd to the top of the column. Note
that the feed distribution is represented mathematically by a
point source through the use of the Dirac delta function[12].
The last term on the right-hand side of Eq.(1) represents the
net rate of the number of droplets generated by breakage and
coalescence events per unit volume and is reported in detail
by Attarakih et al.[6].

The boundary conditions are greatly simplified since the
dispersed and the continuous phases are included in the math-
ematical model given by Eq.(1) as point sources. Accord-
ingly, the Danckwert’s boundary conditions based on the
discussion of Wilburn[13] could be written by considering
the LLEC to behave like a closed vessel between 0+ and col-
umn heightH:
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n(v; z, t) = n0(v; z) ∀z ∈ [0, H ] (4)

The first step in the numerical solution of these equations is
to project the infinite system (with respect to droplet volume
or diameter) of IPDEs given by Eq.(1) onto a finite system
of partial differential equations (PDE) using the generalized
fixed pivot technique. The idea in this technique is to divide
the internal droplet coordinate (volume) into contiguous finite
subdomains covering the range of this internal coordinate. In
each subdomain, the total volume concentration is obtained
by integrating the volume concentration distribution with
respect to volume (diameter) over the boundaries of this sub-
domain. This local volume concentration is then concentrated
at a single point in this subdomain called the fixed-pivot,xi,
and is given by
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v(v)n(v; z, t) dv = v(xi)Ni(z, t),

i = 1, 2, . . . , Mx (5)

This replaces the IPDE given by Eq.(1) by Mx finite number
of PDEs that are non-linearly coupled through the convective
and the source terms. These PDEs are then discretized based
on upwind and central differencing schemes resulting in the
following semi-discrete formulation:
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