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a  b  s  t  r  a  c  t

Recently,  a linear  Model  Predictive  Control  (MPC)  suitable  for closed-loop  re-identification  was  pro-
posed,  which  solves  the  potential  conflict  between  the  persistent  excitation  of  the  system  (necessary  to
perform  a  suitable  identification)  and the  control,  and  guarantees  recursive  feasibility  and  attractivity  of
an invariant  region  of  the closed-loop.  This  approach,  however,  needs  to be  extended  to  account  for a
proper  robustness  to  moderate-to-severe  model  mismatches,  given  that  re-identifications  are  necessary
when the  system  is  not  close  to  the  operating  point  where  the current  linear  model  was  identified.  In  this
work,  new  results  on  robustness  are  presented,  and  an  exhaustive  application  of  the  new  MPC  suitable
for closed-loop  re-identification  to  a nonlinear  polymerization  reactor  simulator  is  made  to explore  the
difficulties  arising  from  a real life  identification.  Furthermore,  several  closed-loop  re-identification  are
performed  in order  to clearly  show  that  the  proposed  controller  provides  uncorrelated  input–output  data
sets, which  together  with  the  guaranteed  stability,  constitute  the main  controller  benefit.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Multivariable model-based control techniques, which use a
prediction model to optimize systems performance, are control
strategies widely used in industry. In particular, linear Model Pre-
dictive Control (MPC) has shown to be extremely useful in this
context, since it bases its formulation on a simplified linear model
of the plant, explicitly considers constraints on the variables, han-
dles the complete process with many manipulated and controlled
variables as a whole, and it optimizes the process performance
[3,27].

One of the key point of an MPC  formulation is the model
used for prediction. This point, however, is not so simple to
analyze/understand, given that in most applications, good perform-
ances are obtained by using only a simplified linear model of the
complex nonlinear system under control. First, the fact – usually
disregarded by the industrial practitioners – that a crucial part of
the model employed by an MPC  strategy is the knowledge of the
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constraints on the variables, should be emphasized. Second, the
other fundamental aspect to be taken into account in an MPC  for-
mulation, is the accuracy of the linear model parameters (mainly
the gain, to perform a suitable economic optimization). In this con-
text, it becomes clear that an updating of the model should be done
every time the process is moved to an operating point far from the
one used to identify the model currently used by the controller. And
more important, it would be desirable to perform this updating in
closed-loop, since disconnecting the controller any time an identi-
fication is needed, is not a practical solution [20,24,30,16,7,15].

The general topic of system identification is a vast area of
research, which involves the problem of handling the collected data
from real process, and how to extract the valuable information from
these data [28,20]. Although the focus of this article is not put on
the identification itself, but on the design of a controller formulation
that permits an easy closed-loop identification, a brief discussion
on the literature related to the closed-loop identification method is
necessary. Roughly speaking, identification methods can be char-
acterized into the following main groups [20,28]: (i) The direct
approach ignores the feedback law and identifies the open-loop
system using measurements of the input and the output. (ii) The
indirect approach identifies the closed-loop transfer function and
determines the open-loop parameters subtracting the controller
dynamic. To do that, the controller dynamic must be linear and
known. (iii) The joint input–output approach takes the input and
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output, jointly, as the output of a system produced by some extra
input or setpoint signal. Since the last two methods need the exact
knowledge of a linear controller, they are not directly applicable
for closed-loops under constrained MPC.

If now the classification is circumscribed to the closed-loop re-
identification under MPC  controllers,  then the following approaches
should be mentioned. Genceli and Nikolaou [9] proposed a con-
troller named Model Predictive Control and Identification (MPCI)
where a persistent excitation condition is added by means of an
additional constraint in the optimization problem. This strategy,
which has been explored later in [2], turns the MPC  optimization
problem non-convex, and so, most of the well-known properties
of the MPC  formulation cannot be established. Zacekova et al. [29]
presented a two-step controller approach: the first stage is devoted
to optimize the control trajectory – as usual in MPC – while the sec-
ond stage is devoted to generate the persistent excitation (PE) input
signal by maximizing the minimal eigenvalue of the information
matrix (a matrix describing the input variability). The link between
these two stages is the optimal cost of the first one, which is used
as constraint of the second one. The second optimization problem,
however, is nonlinear and difficult to solve. Potts et al. [26] made a
study of several MPC  re-identification methods, focusing on the so-
called MPC  Relevant Identification (MRI). This method does not only
take into account the identified model accuracy, but also the model
aptitude for predictions, i.e., the model aptitude from the controller
point of view. Marafioti [22] presents a new MPC-type formulation,
defined as Persistently Exciting Model Predictive Control (PE-MPC).
This formulation incorporates the persistent excitation (PE) signal
by including a constraint into the MPC  optimization problem, as it
was made in [9]. The main difference between these two works is
that the former allows the constraint to be inactive in the transient
regime, and so, the MPC  controller is not forced to obtain identi-
fication results at each sampling time. An enhanced formulation
is presented in [23]. Similar results are presented in [18], where
the time domain constraints are fulfilled while the identification
criterion is taken into account. Heirung et al. [13] proposed the
inclusion of an additional term in the MPC  cost, and the use of a
recursive (and modified) least square algorithm to obtain the on-
line closed-loop identification. This way, the persistent excitation
condition is no longer necessary, given that the excitation level is
increased according to the estimated model parameters. Finally,
[25] proposed to generate a PE signal by means of the maximi-
zation (instead of the minimization) of the MPC  cost function. This
way, the variance (variability) of the signal is maximized while the
process variables fulfill the constraints. Neither the external exci-
tation signal nor the dither signal are required in this approach.
Also, the excitation signal depends – through the output noise – on
the feedback signal, which means that the so obtained input and
output signals will be highly correlated.

In general, none of these works pay attention to the formal
feasibility and attractivity/stability of the MPC  formulated for re-
identifying the system. Recently, [10] has proposed a novel MPC
suitable for re-identification that ensures feasibility and stability,
and performs a safe closed-loop re-identification. The main idea in
this paper is to extend the concept of equilibrium-point-stability
to the invariant-set-stability, and to propose an MPC  that drives
the system into that invariant set, when outside, and persistently
excites the system, when inside. This way, the method avoids the
potential conflict between persistent excitation and control.1 The
MPC  problem formulation is based on the concept of generalized
distance from a point (the state and input trajectory) to a set (tar-
get invariant set and input excitation set). So, it guarantees the

1 It should be remarked that this kind of natural duality of the control task was
first highlighted in [5].

attractivity/stability of the target invariant set and also the feasible
persistent excitation of the system, since both tasks are developed
separately in the state space.

The method proposed in [10], however, involves some theo-
retical definitions which are model-dependent: invariant sets and
distance functions to the invariant set. Then, two issues arise: (1)
if the method could be adapted to reach a sufficient degree of
robustness to properly account for moderate-to-severe model mis-
matches and changes of the operating points, and (2) if the model
identification performed with the data obtained in closed-loop
gives accurate models in every desired scenario. The first question
is of interest since the invariant set used as a target by the MPC may
be invariant in a region of the nonlinear system (precisely, in the
proximity of the equilibrium where the current linear model was
obtained) but not in other ones (when the nonlinear system may  be
steered, by a disturbance or by a change of operating conditions, far
from the original equilibrium). The second question, on the other
hand, is related to the quality of the collected data for identifica-
tion, which in turn depends on the degree of correlation between
inputs and outputs (noise) that the controller produces.

The objective of this work is then to extend the MPC  suit-
able for re-identification to properly account for the robustness to
moderate-to-severe plant-model mismatches. In this regard, the
controller is applied to a nonlinear styrene polymerization reactor
simulator, and several closed-loop re-identifications are performed
to test both, the robustness and identification abilities of the pro-
posed strategy. By means of the simulations it is shown that in most
of the cases it is possible to compute proper robust invariant sets
(according to new theoretic results) – and hence, it is possible to
design a proper MPC  for re-identification. Also, it is shown how
to practically compute the invariant sets according to the regions
of the nonlinear state space, where frequent re-identifications are
needed. Finally, several identifications are performed to show that
the collected input–output noise data are not correlated by the con-
troller. This means that good identifications could be made under
the proposed robust scheme.

The paper is organized as follows. After an Introduction in
Section 1, Section 2 presents the problem statement and the MPC
controller formulations suitable for closed-loop re-identification.
Then, in Section 3, new results related to MPC  robustness are given.
In Section 4, a description of the styrene polymerization reactor
is presented, while Section 5 describes the linear models for pre-
dictions and the constraint sets involved in the problem. Section 6
presents a detailed description of the simulation results, showing
the pros and cons of the MPC  in different scenarios. Finally, Section 7
provides some conclusions of the work.

2. Problem statement and controller formulation

2.1. Model and constraints assumptions

Consider a system described by a linear time-invariant discrete-
time model

x+ = Ax + Bu, y = Cx (1)

where x ∈ n is the system state, x+ is the successor state, u ∈ m

is the current control, and y ∈ p is the system output. The system
is subject to hard constraints on state and input, x(k) ∈ X  ⊂ R

n and
u(k) ∈ U ⊂ R

m, for all k ≥ 0. Furthermore, it admits soft output con-
straints in the form of output zones, y(k) ∈ Y,  where Y  is intended
as an output set of appropriated dimension to perform a system
identification. It is assumed, for simplicity, that matrix A has all its
eigenvalues strictly inside the unit circle, the pair (A, B) is control-
lable, the set X  is convex and closed, the sets U and Y  are convex and
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