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a  b  s  t  r  a  c  t

In empirical  system  identification,  it is  important  to take  into  account  the effect  of  structural  disturbances,
such  as outliers  and  trends  in the  data,  which  might  otherwise  deteriorate  the  identification  accuracy.  A
commonly  used  approach  is  to preprocess  the data  to  remove  outliers  and  trends,  followed  by  system
identification  using  the processed  data.  This  approach  is  not  optimal  because  before  a system  model
is  available  it  may  not  be possible  to separate  outliers  and  trends  in  the  data  from  excitation  by  the
system  inputs.  In  this  study  a procedure  is  presented  for  simultaneous  identification  of ARX and  ARMAX
system  models  and unknown  structural  disturbances,  consisting  of  outliers  and  piece-wise  linear  offsets
or trends.  This  is  achieved  by  introducing  sparse  representations  of the  disturbances,  having  only a few
non-zero  values.  The  system  identification  problem  is  formulated  as a least-squares  problem  with a
sparsity  constraint.  The  sparse  optimization  problem  is solved  using  �1-regularization  with  iterative
reweighting,  which  can  be  solved  efficiently  as a sequence  of  convex  optimization  problems.  Simulated
examples  and  experimental  data  from  a pilot-plant  distillation  column  are  used  to demonstrate  that
using  the  proposed  method  accurate  system  models  can  be identified  from  experimental  data  containing
unknown  trends  and  outliers.

©  2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

In empirical system identification, a system model is deter-
mined using input–output data collected from the process. Apart
from stationary stochastic noise and the known system inputs, the
process or the measurements are often subject to structural distur-
bances, such as outliers, level shifts and piecewise linear trends. It
is important to detect and account for these disturbances properly,
as they may  otherwise deteriorate the identification accuracy. A
standard approach is to apply data preprocessing to remove trends
in the input and output signals system identification, while out-
liers can often be detected and removed by examining the residuals
obtained from a preliminary identification round [1]. This method
is, however, suboptimal, as it is not possible to distinguish between
the effects of the system dynamics and system inputs from those
of trends and outliers unless a system model is already avail-
able. Therefore, system identification and detection of outliers and
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trends in the data are inherently coupled, and should be performed
simultaneously.

The detection of non-stationary components, such as outliers,
level shifts and trends has been studied extensively in time series
and signal analysis [2,3]. Applications where it is important to find
an underlying trend in a time series include, among others, financial
time series analysis, climate time series, astronomy, social sciences,
biological and medical sciences, see for example [2,4,3] and the
references therein. In industrial data analysis and process control,
trend detection and characterization is an important task in process
monitoring and fault detection [5,6].

Several trend filtering methods have been studied, including
smoothing splines [7], exponential smoothing [8], smooth-
ing by minimizing the sum of squares of second differences
(Hodrick–Prescott filtering) [9,10], moving average filtering [11],
band-pass filtering [12,13], median filtering [14], empirical mode
decompositions [15], de-trending via rational square-wave fil-
ters [16], a jump process approach [17], linear programming (LP)
approach with fixed kink points [18], and wavelet transform anal-
ysis [19].

One approach to estimate structural signals, such as outliers,
level shifts and trends, is to exploit sparse representations of the
signals. This allows the use of sparse modeling techniques [20] for
signal identification. Kim et al. [4] presented an �1 trend filtering
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method based on sparse optimization and �1 regularization. In
analogy with the Hodrick–Prescott filter [9], the �1 trend filtering
method determines the trend signal by minimizing the magnitude
of its second differences. The Hodrick–Prescott filter generates
a smoothed trend signal by constraining the sum of the squares
of the second differences, while the �1 trend filtering method
minimizes the sum of their absolute values, producing a piecewise
linear trend estimate. �1 trend filtering has also been applied in
[21] to basis function expansion in nonlinear regression when the
underlying regression function has inhomogeneous smoothness.

System identification in the presence of structural disturbances
has been studied in Xu et al. [22], who consider identification of a
FIR model in the presence of outliers. They show that using a com-
pressed sensing approach, the estimation error goes asymptotically
to zero under certain conditions.

In this paper the �1 trend filter presented in [4] is applied
to identification of ARX and ARMAX models in the presence of
structural disturbances. In the proposed method, sparse opti-
mization is applied to prediction error identification of ARX and
ARMAX models and simultaneous estimation of the structural dis-
turbances. The disturbances can be either a process disturbances
or a measurement disturbances. It is assumed that the structural
disturbances consist of outliers, level shifts and trends, but are oth-
erwise unknown. The fact the structural disturbances and their first
and second differences are sparse (having relatively few non-zero
components) is exploited to formulate the system identification
problem as a sparse optimization problem, which is solved by �1
relaxation with iterative reweighting [23,20].

The paper is organized as follows. In Section 2, the identification
problem is defined. A solution based on sparse optimization is pre-
sented in Sections 3 and 4, and in Section 5 the proposed method
is demonstrated using both simulated examples and experimental
data from a distillation column.

2. Identification in the presence of structural disturbances

We  consider a linear discrete-time system described by

A(q−1)y(k) = B(q−1)u(k − l) + C(q−1)e(k) + F(q−1)d(k) (1)

where is y(k) is the output variable, u(k) is the input, e(k) is random
zero-mean white noise with variance �2, and d(k) is a structural
disturbance. The operators A(·), B(·), C(·), F(·) are polynomials in the
backward shift operator q−1 (q−1y(k) = y(k − 1)),

A(q−1) = 1 − a1q−1 − · · · − anA q−nA

B(q−1) = b0 + b1q−1 + · · · + bnB q−nB

C(q−1) = 1 + c1q−1 + · · · + cnC q−nC

F(q−1) = 1 + f1q−1 + · · · + fnF q−nF

and l is a non-negative time delay. It is assumed that the disturb-
ance d(k) is composed of spikes (outliers) d0(k), piecewise constant
offsets d1(k), and piecewise linear trends d2(k),

d(k) = d0(k) + d1(k) + d2(k). (2)

In the time-series literature, the term structural time series has
been used to refer to time series which can be decomposed as
in (2) [24,25]. Here, we  will call the disturbance d(k) a structural
disturbance.

The outliers occur at discrete time instants k0,i, so that

d0(k) =
{

d0(k0,i), k = k0,i, i = 1, . . .,  M0

0, otherwise.
(3)

The piecewise constant offsets are described by

d1(k) = d1(k1,i), k1,i ≤ k < k1,i+1, i = 1, . . ., M1 (4)

with discontinues at time instants k1,i. The piecewise linear trends
are modeled by

d2(k) = d2(k − 1) + ˇi, k2,i ≤ k < k2,i+1, i = 1, . . .,  M2 (5)

where ˇi is the slope of the trend in the indicated time interval,
and k2,i are the kink points, i.e., the time instants at which the slope
changes [4].

The problem studied in this paper is to identify the system model
(1) in the presence of structural disturbance d(k) from a sequence
{y(k), u(k), k = 1, . . .,  N} of system inputs u(k) and measured outputs
y(k). If the non-stationary structural disturbances are large, they
will deteriorate the identification accuracy, and need to be taken
into account.

A commonly applied way to eliminate the effect of unknown
trends is to preprocess the input and output sequences by fitting
linear trends by least squares prior to system identification [1]. In
this approach it is, however, hard to distinguish between effects
due to the known inputs and the unknown trends, and it is diffi-
cult to generalize it to cases where the trends may  change slopes
during the experiment. It is therefore well motivated to perform
estimation of the system model and the structured disturbances
simultaneously, and to estimate the disturbances even when the
main objective may be to estimate the model parameters ai, bi, ci.
Observe that neither the time instants km,i of the disturbance dis-
continuities nor their values are known. However, it is assumed that
the number of discontinuities M0, M1 and M2 is small compared to
the number N of data points. The identification problem therefore
consists of finding the statistically significant disturbances (3)–(5),
which are not described by the stochastic noise.

In many cases a structural disturbance, such as an outlier or
trend, can be traced to the measurement device. In this case the
disturbance enters at the measured output, and the system is
described by

A(q−1)y0(k) = B(q−1)u(k − l) + C(q−1)e(k)

y(k) = y0(k) + d(k)
(6)

where y0(k) is the disturbance-free output. The system descrip-
tion (6) is a special case of (1) with F(q−1) = A(q−1). As the focus in
this paper is on identifying the system parameters in the presence
of structural disturbances rather than the disturbance dynamics,
we will focus on the cases where the disturbance dynamics are
either ignored, i.e., F(q−1) = 1, or it enters at the output as in (6), i.e.,
F(q−1) = A(q−1). Introducing the parameter vectors

�a = [a1 · · · anA ]T

�b = [b1 · · · bnB ]T

�c = [c1 · · · cnC ]T

�f = [f1 · · · fnF ]T

(7)

and the variable vectors

ϕy(k) = [y(k − 1) · · · y(k − nA)]T

ϕu(k) = [u(k − 1) · · · y(u − nB)]T

ϕe(k) = [e(k − 1) · · · e(u − nC )]T

ϕd(k) = [d(k − 1) · · · d(k − nF )]T

(8)

system (1) can be written as

y(k) = �aϕy(k) + �bϕu(k) + �cϕe(k) + �f ϕd(k) + d(k) + e(k). (9)
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