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a  b  s  t  r  a  c  t

In  this  paper  a  robust  control  is  proposed  for  a  family  of  positive  and  compartmental  systems.  Sufficient
conditions  are  provided  for the  stabilization  of this  kind  of  systems  by  using  sliding  mode  theory.  The
construction  of  a stabilizing  hyperplane  with  a sliding  dynamics  is detailed  and  the  feasibility  of the
method  is discussed.  The  method  is  illustrated  with three  examples.  The  first one  is  a two-dimensional
system  which  is used  only  to  show  the  details  about  the  computation,  the  construction  of the  stabilizing
hyperplane  and  the  robustness  of the  control.  Complementary,  the  last  two  are  actual  interesting  cases
of biomedical  systems  and  they  show  potential  applications  about  the stabilization  and  closed-loop  per-
formance.  It should  be  noted  that these  biomedical  systems  arise  as  a  current  class  of dynamical  systems
with  interesting  challenges  for  the  process  control.
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1. Introduction

Many economical, physical, and biological systems involve
quantities that are represented by positive variables, that is, con-
centration of substances, the liquid level in tanks or biomass. These
examples belong to the class of positive systems, where the state
variables and initial conditions are non negative, this kind of sys-
tems admits positive controls, by example in reactors and bio
processes the control action is related to flows whose value are
strictly positive, see [1,2]. In addition, this class of systems are
often structured in compartments, as chemical reactors, physio-
logical models, mixing tanks, etc. Due to this practical issue, there
is a motivation on analysis of these control systems. A family of
linear affine positive systems is considered in this paper, these sys-
tems satisfy the hypothesis of the theory of stability, such as the
Frobenius–Perron theorem for Metzler matrices and Gerschgorin
theorem applied to compartmental matrices. The main interest
is to propose the existence of a sliding dynamic on a hyperplane
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segment of a general linear system with positive control. That is,
let be the next a linear system with positive control

ẋ = Ax + bu, (1)

where x, b ∈ R
n+ and u ∈ [r1, r2] ⊂ R+. The hyperplane segment

of dimension n − 1 is contained in R
n+ and, with an appropriated

control, the stabilization rate of the system (1) can be improved.

2. Preliminaries

2.1. Positive control systems

A linear system in continuous time

ẋ = Ax + Bu

y = Cx + Du
(2)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rr×n and D ∈ Rr×m is considered to
be a positive linear system if for every nonnegative initial state
and for every nonnegative input, the state of the system and the
output remain nonnegative [3,4]. In this proposal, the existence
of the sliding dynamics of the positive control system arises from
some interesting properties of the homogeneous linear system:

ẋ = Ax, (3)

where x ∈ R
n and A ∈ R

n×n. The next definitions and theorems are
the main assumptions of this work.
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Definition 1. The system (3) is called positive if x(t, x0) ≥ 0 for all
t ≥ 0 and x0 ≥ 0.

In other words, if R
n+ is an invariant set for the system (3), then

the system is positive.

Definition 2. A matrix A = [aij] ∈ R
n×n is called Metzler matrix, if

aij ≥ 0 for i /= j.

Theorem 1. The system (3) is positive if and only if A is Metzler.

Remark 1. A linear control system given by Eq. (2) is positive if
and only if the matrix A is a Metzler matrix, and B, C, and D are
nonnegative matrices.

Definition 3. A matrix A = [aij] ∈ R
n×n is called Hurwitz matrix,

if all of its eigenvalues have negative real part.

Theorem 2. Frobenius–Perron for Metzler matrices.
Let A be a Metzler matrix. Then, there are a real number �0 and a

vector ω0 ≥ 0 such that,

(i) Aω0 = �0ω0.
(ii) If � /= �0 is an eigenvalue of A, then Re(�) < �0.

Theorem 3. Let A ∈ R
n×n be a Metzler matrix. There is a positive

matrix −A−1 if and only if, A is a Hurwitz matrix, where A−1 is the
inverse matrix of A.

Theorems 1–3 are well known, and they define the conditions
of positivity. Their demonstrations can be seen in [5,6].

2.2. A strategy to improve the stabilization rate with sliding mode
theory

Consider the system (1), with A ∈ R
n×n Metzler and Hurwitz,

b ∈ R
n+, and r2 > r1 ≥ 0. The positive fixed point x̄ = −A−1bū (with

a constant ū ∈ [r1, r2]) is a global asymptotically stable point. This
leads to the question: is it possible to improve the stabilization rate,
that is, the rapid convergence to x̄ considering u ∈ [r1, r2] instead
of u = ū?  Before answering this question, observe that the system
(1) is not controllable, according to the controllability theorem of
Brammer (see [7]), if A has at least a real eigenvalue, then the system
(1) is not completely controllable with positive control.

Now, consider the system (1), where the matrix A is Metzler, the
control u ∈ [r1, r2], r2 > r1 ≥ 0, and b ∈ R

n+. The next positive fixed
points are considered:

x̄1 = −A−1br1 and x̄2 = −A−1br2

such that ‖x̄1‖ < ‖x̄2‖. These equilibrium points are collinear with
the origin.

The Hurwitz matrix A implies that each fixed point x̄i is a globally
attractor of the feedback system ẋ = Ax + bri, i = 1, 2. To describe
the sliding, the hyperplane in Rn+ is firstly characterized. This is
represented by the equation

Lx = k (4)

where L is a row-vector in Rn and k is a scalar such that k > 0; both
are parameters to be determined. The sliding condition is expressed
by the inequalities:

lim
(Lx−k)→0+

L(Ax + br1) < 0 for x ∈ R
n
+,

lim
(Lx−k)→0−

L(Ax + br2) > 0 for x ∈ R
n
+.

(5)

k is deduced from the straight line segment joining the fixed points:

x = �x̄1 + (1 − �)x̄2, for � ∈ (0,  1),

if � ∈ (0, 1) then the hyperplane Lx − k = 0 crosses the fixed point x̄,
thus

k = Lx̄. (6)

Consider the sliding condition (5), the values of r1, r2, x̄, and L,
and the discontinuous control

u =
{

r1 if Lx − k > 0

r2 if Lx − k < 0,
(7)

it is straightforward to show that any solution x(t) with initial con-
dition outside of the hyperplane Lx = k reaches it in a finite time. It is
known that the discontinuous control (7) takes values at the bounds
of the restriction interval [r1, r2], and it minimizes the arriving time
to the hyperplane Lx = k [8]. Now, according to the condition (5) and
considering the Lyapunov function V = 1

2 (Lx − k)2, the control (7)
is the solution of the optimization problem consisting in finding the
minimum of dV

dt restricted to u ∈ [r1, r2].
Once the sliding condition (5) is satisfied, a dynamic invariant

is generated on the hyperplane Lx = k, this dynamic corresponds to
the application of the called equivalent control ueq, which is defined
for x such that Lx = k, and it is derived from Lẋ = 0. Thus

L(Ax + bueq) = 0,

and

ueq = − LAx

Lb
.

With this result a global stabilizing positive control, for all x ∈
R

n+ is proposed:

u =

⎧⎪⎪⎨
⎪⎪⎩

r1 if Lx − k > 0

− LAx

Lb
if Lx − k = 0

r2 if Lx − k < 0.

(8)

3. Existence and design of a family of sliding hyperplanes

Consider a Metzler matrix A given by (1), a row-vector L, and a
column-vector p, both in Rn, such that

LT =
(
−A−1

)T
p.

Proposition 1. Consider the feedback control system (1). If p ∈
int(Rn+), then there exists a sliding over the hyperplane S(x) = {x ∈
R

n+ | Lx − k = 0}.

Proof. If p ∈ R
n+ a row-vector L =− pTA−1 can be deduced, such

that

ueq = − LAx

Lb
> 0, (9)

then

ueq = pT x

pT (−A−1)b
> 0 for x ∈ R

n
+.

From the Theorem 1 in [9] and choosing r2 > 0 large enough
(0 < ueq < r2), there exists a sliding on the hyperplane S(x).�

Note that Aeq = A + b
(

pT

pT (−A−1)b

)
is a Metzler matrix, since it is the

sum of a Metzler matrix and a matrix with nonnegative entries.



Download English Version:

https://daneshyari.com/en/article/688669

Download Persian Version:

https://daneshyari.com/article/688669

Daneshyari.com

https://daneshyari.com/en/article/688669
https://daneshyari.com/article/688669
https://daneshyari.com

