
Journal of Process Control 41 (2016) 56–66

Contents lists available at ScienceDirect

Journal  of  Process  Control

j our na l ho me  pa g e: www.elsev ier .com/ locate / jprocont

Kinetic  feedback  design  for  polynomial  systems

György  Liptáka,b, Gábor  Szederkényia,c,  Katalin  M.  Hangosa,b,∗

a Process Control Research Group, Systems and Control Laboratory, Institute for Computer Science and Control (MTA SZTAKI), Hungarian Academy of
Sciences, Kende u. 13-17, H-1111 Budapest, Hungary
b Department of Electrical Engineering and Information Systems, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
c Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/a, H-1083 Budapest, Hungary

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 26 June 2015
Received in revised form 7 December 2015
Accepted 2 March 2016
Available online 26 March 2016

Keywords:
Non-negative systems
Kinetic systems
Optimization
Chemical reaction networks
Feedback equivalence
Feedback design

a  b  s  t  r  a  c  t

New  computational  methods  are proposed  in  this  paper  to construct  polynomial  feedback  controllers  for
the  stabilization  of polynomial  systems  with linear  input  structure  around  a positive  equilibrium  point.
Using  the  theory  of  chemical  reaction  networks  (CRNs)  and  previous  results  on dynamical  equivalence,  a
complex  balanced  or weakly  reversible  zero  deficiency  closed  loop  realization  is achieved  by  computing
the  gain  matrix  of  a  polynomial  feedback  using  optimization.  It  is  shown  that  the feedback  resulting  in
a  complex  balanced  closed  loop  system  having  a prescribed  equilibrium  point  can  be  computed  using
linear  programming  (LP).  The  robust  version  of  the  problem,  when  a convex  set of polynomial  systems  is
given  over  which  a stabilizing  controller  is  searched  for, is also  solvable  with  an  LP solver.  The  feedback
computation  for  rendering  a polynomial  system  to  deficiency  zero  weakly  reversible  form  can  be  solved  in
the mixed  integer  linear  programming  (MILP)  framework.  It is  also  shown  that  involving  new monomials
(complexes)  into  the  feedback  does not  improve  the  solvability  of  the  problems.  The  proposed  methods
and tools  are  illustrated  on  simple  examples,  including  stabilizing  an  open  chemical  reaction  network.

©  2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Polynomial systems form a well-investigated class of smooth
nonlinear systems that enable us to apply computationally effi-
cient methods for their dynamic analysis and control [4], and at
the same time, have practically important applications in the field
of process-, mechanical-, or (bio)chemical-control, etc. Within this
class, positive polynomial systems play an important role in the
applications, where the value of the variables is positive by nature,
such as pressure, temperature, composition, etc.

Deterministic kinetic systems with mass action kinetics or
simply chemical reaction networks (CRNs) form a wide class of
non-negative polynomial systems. CRNs are able to produce all the
important qualitative phenomena present in nonlinear systems, so
they form a relatively rich sub-class there. At the same time, CRNs
are closed lumped process systems under isothermal and isobaric
conditions [21], that exhibit polynomial nonlinearities. A recent
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survey shows [2] that CRNs are also widely used in other areas than
chemical reaction kinetics or process systems that include biolog-
ical applications, such as to model the dynamics of intracellular
processes and metabolic or cell signalling pathways [19].

The theory of chemical reaction networks has significant results
relating network structure and the qualitative properties of the
corresponding dynamics [26,15]. However, the network structure
corresponding to a given dynamics is generally not unique [8].
Recently, optimization-based computational methods were pro-
posed for dynamically equivalent network structures with given
preferred properties (see, e.g. [41–43,32]).

The field of feedback controller design for nonlinear systems in
general, and process systems in particular has been continuously
developing in recent decades, because of its practical importance
and challenging theoretical nature. It is well-known that the uti-
lization of the physical and/or structural specialties of different
nonlinear system classes greatly helps in obtaining theoretically
well-grounded, powerful and practically still feasible control meth-
ods. In general control theory we have sound methods of nonlinear
feedback design for smooth input-affine systems [29], flat sys-
tems [33], Hamiltonian or port-Hamiltonian systems [5,46], or
that for Euler-Lagrange systems [38]. Utilizing the engineering
insight into the physics and chemistry of the system, the ther-
modynamic passivity approach [47] as a special control approach
has been proposed for nonlinear process systems that is based on

http://dx.doi.org/10.1016/j.jprocont.2016.03.002
0959-1524/© 2016 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.jprocont.2016.03.002
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jprocont.2016.03.002&domain=pdf
mailto:lipgyorgy@scl.sztaki.hu
mailto:szederkenyi@itk.ppke.hu
mailto:hangos@scl.sztaki.hu
dx.doi.org/10.1016/j.jprocont.2016.03.002


G. Lipták et al. / Journal of Process Control 41 (2016) 56–66 57

controlling its inventories [30]. Further improvements of the phys-
ically motivated nonlinear controller design have been achieved
by using passivity [24], control Lyapunov [12] and Hamiltonian
approaches [9,23,39,40] to nonlinear process systems.

The control design of positive polynomial systems – to which
CRNs belong – has become quite popular recently (see e.g. [45]),
that is explained by the great practical importance and wide expres-
sive power of such systems. An introduction and overview on the
analysis and design of polynomial control systems using dissipation
inequalities is given in [10]. The computational tools used for both
the stability analysis and feedback design for such systems is the
semidefinite programming and the sum of squares decomposition
[4], that is computationally hard, therefore, generally not feasible
for large-scale problems. It is shown in [37] that the stabilizing con-
trol of quasi-polynomial (QP) process models can be solved through
bilinear matrix inequalities. A recent paper proposes approximate
but computationally feasible methods for optimally controlling
polynomial systems [28]. An LMI  (linear matrix inequalities) tech-
nique for the global stabilization of nonlinear polynomial systems
using a quadratic control Lyapunov function candidate is reported
in [2].

Motivated by the above results, the general purpose of our
work is to construct polynomial feedback controllers to polyno-
mial systems to achieve a closed loop system in a CRN form with
given advantageous structural properties. In [44], the problem of
obtaining a closed loop system in CRN form was  addressed in the
framework of mixed integer linear programming. The idea has
been further extended to cover feedback design to achieve weak
reversibility and minimal deficiency in the closed loop CRN form
in [34]. The aim of the present paper is to propose a systematic
approach for the optimization-based state feedback computation
for polynomial systems to achieve structural stability utilizing the
prescribed properties of the closed loop CRN form of the system.

2. Reminder on polynomial systems associated with
chemical reaction networks

This section is devoted to the notions and tools applied in the
theory of positive (or non-negative) polynomial systems that are
widely applied in process control. The main emphasis is put on
the most important subclass of positive polynomial systems that
are chemical reaction networks with mass action law (abbreviated
as MAL-CRN). The notations used in this section are mainly based
on Lecture 4 in [14] and on [18].

2.1. Kinetic systems, their dynamics and structure

Let us consider a polynomial nonlinear system that can be
described in the form of an ODE

ẋ = f (x) = M · ϕ(x), (1)

where x ∈ R
n is the state variable, M ∈ R

n×l , and ϕ : R
n �→ R

l is a
polynomial mapping.

A polynomial system has a kinetic realization, if a suitable
MAL-CRN model can be constructed for it. The problem of kinetic
realizability of polynomial ODE models was first examined and
solved in [27] where it was shown, that the necessary and suffi-
cient condition for kinetic realizability of a polynomial vector field
is that all coordinates functions of f in (1) must have the form

fi(x) = −xigi(x) + hi(x), i = 1, . . .,  n (2)

where gi and hi are polynomials with non-negative coefficients. It
is easy to prove that kinetic systems are non-negative [20].

2.1.1. CRN systems
If the condition (2) is fulfilled for a polynomial dynamical sys-

tem, then it can always be written into the form

ẋ = Y · Ak ·  (x), (3)

where x ∈ R
n is the vector of state variables, Y ∈ Z

n×m
≥0 with distinct

columns is the so-called complex composition matrix,  Ak ∈ R
m×m

contains the information corresponding to the weighted directed
graph, the reaction graph, of the reaction network (see below). As
it will be visible later, the generally non-unique factorization (3)
is particularly useful for prescribing structural constraints using
optimization. According to the original chemical meaning of this
system class, the state variables xi represent the concentrations
of the chemical species denoted by Xi, for i = 1, . . .,  n. Moreover,
  : R

n �→ R
m is a mapping given by

 j(x) =
n∏
i=1

xYiji , j = 1, . . .,  m. (4)

Ak is a column conservation matrix (i.e. the sum of the elements in
each column is zero) defined as

[Ak]ij =

⎧⎪⎨
⎪⎩

−
m∑

l=1,l /= i

kil, if i = j

kji, if i /= j

(5)

where kij ≥ 0, i /= j. Note that Ak is also called as the Kirchhoff matrix
of the network.

The complexes are formally defined as non-negative integer lin-
ear combinations of the species in the following way:

Ci =
n∑
j=1

YjiXj, i = 1, . . .,  m (6)

Note, that a column (let’s say column i) of the matrix Y may  be
equal to the zero vector. In such a case, complex Ci is called the zero
complex.

2.1.2. The reaction graph and its incidence matrix
The structure of MAL-CRNs is well characterized by a weighted

directed graph, called the reaction graph, and by its complex compo-
sition matrix.

The weighted directed graph (or reaction graph) of kinetic sys-
tems is G = (V, E), where V = {C1, C2, . . .,  Cm} and E denotes the set of
vertices and directed edges, respectively. The directed edge (Ci, Cj)
(also denoted by Ci �→ Cj) belongs to the reaction graph if and only
if [Ak]ji > 0. In this case, the weight assigned to the directed edge
Ci �→ Cj is [Ak]ji. Naturally, [Ak]ji = 0 means that (Ci, Cj) /∈ E.

In addition to the Kirchhoff matrix of the system, one can char-
acterize the reaction graph using its incidence matrix BG ∈ { − 1,
0, 1}m×r where r is the number of reactions. Each reaction in the
CRN is represented by the appropriate column of BG as follows. Let
the �-th reaction in the CRN be Cj �→ Ci for 1 ≤ � ≤ r. Then the �-th
column vector of BG is characterized as: [BG]i� = 1, [BG]j� = −1, and
[BG]k� = 0 for k = 1, . . .,  r, k /= i, j. It is clear from the above descrip-
tion that the unweighted directed graph structure of a kinetic system
can be characterized by the matrix pair (Y, BG).

2.2. Stoichiometric subspace and compatibility classes

The stoichiometric subspace is defined as

S = span{[Y] · ,j − [Y] · ,i | ∃Ci �→ Cj} (7)

where [Y]·,i denotes the ith column of Y. The rank (or dimension)  of
a reaction network denoted by s is the dimension of the stoichio-
metric subspace.
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