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a  b  s  t  r  a  c  t

In  the  pursuit  of online,  data-driven  process  control,  there  is a  need  to determine  the  quality  of  the
data  being  processed  before  actually  using  it.  One  area  that  needs  to be considered  is  data  quantisation.
Although  in  many  applications  it has  been  assumed  that the  impact  of  quantisation  is  to solely  increase
the  variance  of  the  signal,  in  certain  cases  this  may  not  hold.  This  is  especially  the case  when  dealing  with
signals  from  poorly  quantised  sources,  such  as  temperature  sensors.  In this  case,  the  effect  of  quantisation
cannot  be  solely  considered  by the  impact  of  the increase  in the variance.  Therefore,  this  paper  will
examine  the  effects  of small  scale  quantisation  with  the  view  of  determining  an  appropriate  metric  for
measuring  the effect  on  data  quality  of quantisation.  It will  be shown  that if  the  ratio  of the  unquantised
signal  variance  and  the  distance  between  quantisation  step  sizes  are  below  a given  threshold,  then  the
identification  of the  process  parameters  will be  problematic.  Detailed  numerical  simulations  as well  as
an example  drawn  from  a  real  system  are  presented  to validate  the  proposed  metrics  and  approach.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

To achieve complete data-driven process identification and con-
trol, there is a need to automatically assess the data quality of the
incoming signals and take appropriate action before the signals
inappropriately affect the computation of the process parameters
and controller. In order to achieve this, a data quality assessment
framework needs to be developed. Currently, there exist two  sim-
ilar approaches to developing an overall data quality framework
[1,2]. Both these approaches focus on developing methods that can
determine whether a given data set is sufficiently excited for pro-
cess systems identification. However, it is possible that, although
the signal is sufficiently excited for identification, due to various
preprocessing that has been performed, the value obtained may
not be accurate. One rather common method of preprocessing is
quantisation or the conversion of continuous signal values to a
limited set of possible signal values. In most cases, the effects of
quantisation on the signal properties are minimal. In some cases,
due to improper initial calibration or subsequent implementation,
the quantisation may  be inaccurate. Such behaviour is often seen in
temperature signals, where the thermocouple used is calibrated for
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a wide range of temperatures leading to a rather coarse resolution. If
the temperature measurements do not vary greatly, then it is possi-
ble that there will be a loss of precision due to the large quantisation
that has been adopted. This can occur often in a closed-loop pro-
cess operating under tight control, that is, with minimal excitation.
Such data are often the foundation for subsequent use in process
monitoring, fault detection and isolation, and adaptive controller
design. Therefore, understanding the impact of quantisation will
have an impact on these fields.

The analysis of the impact of quantisation on the signal prop-
erties and hence on process identification has been approached
from many different perspectives. In the most common method, it
has been assumed that the quantisation levels have a fine enough
resolution so that the overall impact is that the quantised error is
uncorrelated with the original signal. Hence, the only effect is an
increase in the signal variance. In such cases, it is possible to use
Sheppard’s correction, that is, assume that quantisation increases
the variance [3]. Work analysing the implications of this approach
has been widely published [4–7] with the general conclusion that
the overall impact on identification is minimal. However, although
this approach works for many signals, it can fail when an improper
quantisation has been performed. In such cases, there is a need to
consider the full theory and examine its implications on the sig-
nal properties. The fundamentals of this rigorous approach can be
found in [3,8], where a detailed model and formulation of quanti-
sation and its effects on the signal can be seen. Finally, given the
large use of system identification in many applications, the impact
of quantisation will be important in such areas as fault detection,
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Fig. 1. Graphical representation of a quantiser.

data-driven controller design, and control performance monitor-
ing.

Therefore, the objectives of this paper are (1) to examine in
detail the effect of quantisation on system identification through
a detailed review of quantisation theory; (2) to propose an appro-
priate metric that can be used to determine the suitability of the
data given the quantisation present for use in system identifica-
tion and process monitoring; and (3) to validate the results using
both Monte Carlo simulations and experimental data from system
identification.

2. The theory of quantisation

Consider a quantiser that takes a continuous, analogue signal
and returns a quantised, analogue signal that only allows certain
values for the signal. The behaviour of a quantiser is shown in Fig. 1.
Mathematically, this can be modelled as [6]

x̃t = ı
⌊

(xt + �)
ı

⌋
(1)

where x˜t is the quantised signal, ı is the spacing between quanti-
sation levels, � is the centre point of the quantiser, xt is the original
unquantised signal, and [·] is the floor or round down function. The
midpoint riser quantiser, where � = 0.5, is the most common type
of quantiser [6]. It can be noted that quantisation is a nonlinear
process, which can lead to complications in the analysis of results.

For the purposes of this discussion, it will be assumed that the
number of levels is infinite, that is, saturation does not occur, and
that the true process is a Gaussian signal centred about the mid-
point of one of the quantisation levels. Consider the case where the
input to the quantiser can be modelled as a Gaussian distribution
with a probability density function, fx,

fx(x) = 1√
2��

e
− x2

2�2 (2)

where � is the standard deviation of the Gaussian noise, which is
assumed to have a mean of zero. Let the error between the true
value and the quantised value be given as

ε = x − x̃ (3)

It is desired to determine the properties of the error signal and
hence its implications for identification. Thus, Theorem 1 deter-
mines the quantisation error density function, while Theorems 2
and 3 provide the mean and variance of the quantisation error.
Finally, using the properties of the quantisation error, Theorem 4
determines the variance of the quantised signal, while Theorem 5
provides the correlation between the quantised and original sig-
nals. The uncentred case is briefly examined in Theorem 6 and it
is shown that the overall results are no different from the centred
case. Together Theorems 4–6 allow for the impact of quantisation
on system identification to be clarified.

Theorem 1. Quantisation Error Density Function: The probability
density function of the quantisation error can be written as

fε(x) =
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Proof. A proof can be found in [3].�

Theorem 2. Mean Value of the Error: The mean value of the error is
zero.

Proof. From the definition of the error, the mean value can be
computed as
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Theorem 3. Variance of the Error: The variance of the error can be
written as

E(ε2) = var (ε) = ı2

12

[
1 + 12

�2

∞∑
n=1

(−1)n

n2
exp

(
−2�2n2�2

ı2

)]
(6)

Proof. Following the same approach as in Theorem 2, it can be
shown that
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Theorem 4. Variance of the Quantised Signal: The variance of the
quantised signal is given as

E(x̃2) = var (x̃) = E((x − ε)2) = E(x2) + 4�2
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Proof. A detailed proof, which involves the creation of a joint
probability distribution for two  Gaussian signals and their quan-
tised analogues, is available in [3].�

Theorem 5. Covariance of the Original Signal and its Quantisation
Error: The covariance between the original Gaussian signal and the
quantised signal is given as
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where �4 is the fourth Jacobi theta function.
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