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a  b  s  t  r  a  c  t

In this  paper,  a Bayesian  robust  linear  dynamic  system  approach  is  proposed  for  process  modeling.  Tra-
ditional  linear  dynamic  system  (LDS)  constructed  with  Kalman  filter  is designed  by  Gaussian  assumption
which  can  be easily  violated  in  non-Gaussian  modeling  situations,  especially  those  with  outliers.  To  deal
with  this  issue,  the conventional  Gaussian-based  Kalman  filter  is  modified  with  heavy  tailed  Student’s  t-
distribution  so  as to  deal  with  the non-Gaussian  noise  and  modeling  outliers.  Then,  a  variational  Bayesian
expectation  maximization  (VBEM)  algorithm  is developed  for learning  parameters  of the robust  linear
dynamic  system.  For  process  monitoring,  traditional  monitoring  scheme  are  discussed  and  the resid-
ual  space  monitoring  mechanism  has  been  improved.  To  explore  the feasibility  and  effectiveness,  the
proposed  method  is applied  for fault  detection,  with  detailed  comparative  studies  with  several  other
methods  through  the Tennessee  Eastman  benchmark.

© 2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Industrial processes have become more and more complex, with the development of modern manufacturing equipments and process
control mechanisms [1,2]. In order to maintain the safe operation of process systems, process monitoring is particularly essential [3].
Among the various monitoring schemes, data driven multivariate statistical process monitoring (MSPM) models make little requirement
for accurate kinematic equations and are easy to be established [4–6]. Consequently, MSPM models such as principal component analysis
(PCA) are widely studied and applied over the past few decades [7].

PCA can detect faults effectively by constructing T2 statistic using latent space information; meanwhile, SPE statistic is also constructed
by the residual space so as to monitor the change of measurement noise. Although traditional PCA has been popular and effective for many
industrial applications, one drawback is that the original deterministic model is lack of natural interpretation of the process uncertainties
[8,9]. Thereby, probabilistic PCA (PPCA) has been proposed recently. On the one hand, the PPCA incorporates process uncertainties by
employing Gaussian distributions on latent and observed modeling spaces; therefore, one can describe data variances in a more elegant
manner. On the other hand, irregular process data such as missing items can also be well handled within expectation maximization learning
mechanism [10]. With further improvement, PPCA has also been extended by mixture formulation so as to model those processes with
multiple operating modes [11].

As static modeling methods, both PCA and PPCA assume data samples as independently collected from sensors with no time serial
correlations. However, it is well known that most industrial processes evolve from past operation situations to potential future events
[12,13]. Therefore, dynamic behavior should be one of the most important characteristics for industrial process data [14–19]. To consider
the time serial related property, dynamic PCA (DPCA) has been developed by augmenting each measurement with a fixed length of several
previous measurements and aligned to a stacking matrix [20]. After that, similar PCA projections and statistics are then constructed.
Another commonly used dimensionality reduction based method is canonical variate analysis (CVA) [21]. CVA considers correlations
by maximizing the related correlation index among variables, some studies show that compared with PCA and DPCA, CVA provides more
desirable monitoring performance [22]. It should be noted that both DPCA and CVA are built with deterministic manner and no probabilistic
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interpretations for noise uncertainties have been considered. As a probabilistic alternate, a data-based linear Gaussian state space model
(LGSSM) has been developed [3]. LGSSM is a linear dynamic system (LDS) which constructs state space model with Gaussian states and
Gaussian noises. Upon that, Kalman filter and EM iterations are introduced for estimating states and model parameters. Simulation results
show that compared with traditional PCA and PPCA, LGSSM is more desirable for dynamic process modeling and monitoring [3]. However,
one common issue for LDS method is that the Gaussian assumption can be violated by potentially sampling outliers [23]. Outliers can be
hardly avoided and may  cause model misspecification for Gaussian based methods [24]. The reason is that Gaussian models assume the
distribution tails drop exponentially which is known as the three-Sigma principle [25]. However, outliers usually occur in or beyond the
three-Sigma region. Even if outliers are embedded within such regions, outliers are not safe since the potential non-Gaussian variations
may  challenge the Gaussian assignation. In this condition, estimated significant parameters like mean and covariance can be skewed [26].

In this article, a Student’s t-based assumption has been employed for LDS observation space so as to tolerate sampling outliers. Besides
mean and scale matrix, the Student’s t-distribution is defined with a tail adjust parameter called degree of freedom [27,28]. Thus, the
Student’s t-distribution provides reasonable tolerance for outliers without badly distorting the entire distribution [29]. In this sense, the
derived method is called robust LDS. In addition to outlier modeling problem, another important issue is parameter learning. In order
to make the closed form calculation such as maximum likelihood (ML) estimation computationally tractable, the original Student’s t-
distribution is usually represented as an infinite combination of Gaussian formulas with same mean and covariance parameters. However,
several drawbacks can be found for ML  methods [30]. First, the log-likelihoods in ML  are not bounded which may  result in singular
covariance results [31]. Second, EM derived ML method can be easily stuck into local maxima [32]. As an alternative, variational Bayesian
(VB) inference overcome these problems by treating model parameters as random quantities and taking integrations over these unknown
quantities [33,34]. In other words, instead of finding a point estimation over parameters, VB based EM tries to derive some easy-to-handle
approximate distributions over these parameters. Compared with ML  based method, VB based EM algorithm can reach more appreciate
solutions. Based on this, we propose a VB based EM algorithm for robust LDS modeling and the derived method is called variational Bayesian
robust LDS (VBRLDS). In the VBE step, Kalman filter and smoother is employed for estimating expectation related terms, while in the VBM
step, the variational inference is called so as to re-estimate those parameters with obtained expectation terms. Finally, in order to apply
the VBRLDS for fault detection, traditional statistics are discussed and the control limit for SPE statistics has been modified so as to tolerate
outliers. A two-component Gaussian mixture model based scheme has been proposed for designing control limit under the disturbance of
outliers.

The remainder of this paper is organized as follows. In Section 2, robust LDS is first defined. Then, a variational Bayesian EM algorithm
is proposed in Section 3, followed by the fault detection schemes and discussions. In Section 4, a comparative study is conducted. In the
last section, conclusions are made.

2. Method

2.1. Robust linear dynamic system

The state space model for robust linear dynamic system can be defined as [3]

xk = Axk−1 + wk (1)

yk = Cxk + vk (2)

where yk ∈ RD is the D dimensional observation vector at time k(k = 2, 3, ..., N), xk ∈ Rd is the d dimensional latent state vector, A ∈ Rd×d

denotes the state transition matrix, C ∈ RD×d is measurement matrix, wk ∈ Rd is assumed as Gaussian distributed process noise, vk ∈ RD is
assumed as Student’s t-distributed non-Gaussian measurement noise with heavy tail. We  have wk ∼ N(0, Q) and vk ∼ t(0, ˙,  �). Here N(·)
and t(·) denote Gaussian and Student’s t distributions, respectively, Q is diagonal state covariance matrix,  ̇ is a diagonal observation scale
matrix and � is degree of freedom. Hence, state transition and observation probabilities can be given as [3]:

p(xk|xk−1) = N(xk|Axk−1, Q) (3)

p(yk|xk) = t(yk|Cxk, ˙,  �) (4)

Please notice that the state space in Eq. (3) is still modeled by Gaussian distribution since we assume that outliers should be modeled
and explained within measurement space which is a heavy tailed Student’s t distribution as defined in Eq. (4). A D-dimensional Student’s
t-density with mean xk, scale matrix  ̇ and degree of freedom � can be defined as [26]:
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Student’s t-distribution deteriorates to the Gaussian fashion as �→ ∞.  As mentioned above, the original Student’s t formulation may  result
in computationally intractable solutions. Fortunately, the above Eq. (5) can be further analyzed with Gaussian mixtures with Gamma  prior
as [26]
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where Ga(·) is the Gamma  distribution. One can infer from Eq. (6) that a latent prior variable uk is used to control the shape of distribution
by regulating the variance term.

Notice that if one defines the initial distribution of latent state variable as x1 ∼ N(�1, P1), the entire parameter set need to be estimated
can be given as � =

{
A, C, Q, ˙,  �, �1, P1

}
. As a further illustration, a graphical representation of the RLDS is given in Fig. 1. One can see
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