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a  b  s  t  r  a  c  t

In  this  paper,  a novel  dimensionality  reduction  technique,  named  sparse  representation  preserving
embedding  (SRPE),  is  proposed  by  utilizing  the sparse  reconstruction  weights  and  noise-removed  data
recovered  from  robust  sparse  representation.  And a  new  dynamic  process  monitoring  scheme  is designed
based on  SRPE.  Different  from  traditional  manifold  learning  methods,  which  construct  an  adjacency  graph
from  K-nearest  neighbors  or ε-ball  method,  the SRPE  algorithm  constructs  the  adjacency  graph  by  solving
a robust  sparse  representation  problem  through  convex  optimization.  The  delicate  dynamic  relation-
ships  between  samples  are  well  captured  in the  sparse  reconstructive  weights  and  the  error-free  data
are recovered  at the  same  time.  By  preserving  the  sparse  weights  through  linear  projection  in the clean
data space,  SRPE  is very  efficient  in  detecting  dynamic  faults  and  very  robust  to outliers.  Finally,  through
the  case  studies  of  a dynamic  numerical  example  and  the  Tennessee  Eastman  (TE)  benchmark  problem,
the  superiority  of  SRPE  is  verified.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

As an important technique to enhance process safety and to
ensure product quality, process monitoring has received tremen-
dous attention in both academia and industry during the last two
decades [1–3]. In modern industrial systems, owing to the wide use
of sensors and implementation of advanced computer and infor-
mation technology, process data, which can be efficiently collected
and stored at low costs, usually have high dimensions and reflect
rich information about the process characteristics [2,4]. As a result,
these process data can be utilized for process modeling and mon-
itoring. Multivariate statistical process monitoring (MSPM) is one
of the most popular data-driven techniques and has been widely
applied in real industrial processes for its simplicity. Principal com-
ponent analysis (PCA) and partial least squares (PLS) are two  of the
most widely used models in MSPM [5–7], both of which project high
dimensional, highly correlated process data onto a low dimensional
latent subspace to retain the most data variation through the first
few principle components. In the low dimensional subspace, the
global Euclidean structure of the data is preserved. However, PCA
assumes that the process data are Gaussian distributed, which is
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seldom the case in real industry. When the Gaussian assumption is
not met, the local geometrical structure of the original data set can
be lost in the low dimensional subspace, and thus the monitoring
performance will be deteriorated.

Besides, MSPM methods assume that the process variables
are sampled statistically independently over time. However this
assumption is only valid over long sampling intervals. Because of
the closed-loop control systems in industrial processes, the process
samples are temporally correlated. When a fault only influences
the dynamic characteristics of the process, the monitoring perfor-
mance will be seriously hampered. To extend the PCA application to
dynamic process monitoring, Ku et al. proposed a time lagged ver-
sion of PCA called dynamic PCA (DPCA) [8]. In the DPCA model, time
lagged measurements are added to the data matrix and traditional
PCA is performed on the augmented data. Although DPCA can han-
dle dynamic process better than PCA, within the DPCA model the
cross-correlation among variables and auto-correlation over time
are mixed, making the model parameters overly large and mak-
ing it difficult to interpret the dynamic relationships. Besides, the
score variables of the DPCA model are auto-correlated. To remove
this autocorrelation, the univariate ARMA filters were proposed [9].
Besides the DPCA method, there are also some attempts based on
the subspace modeling [10,11]. These attempts mainly focused on
the subspace identification methods, e.g. numerical subspace state
space system identification (N4SID), error in variable (EIV) identi-
fication, and canonical variate analysis (CVA) [12–14]. In the CVA
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model, both the past information vectors and the future informa-
tion vectors are defined. Afterwards, the dynamics are modeled
by capturing the relationships between the two vectors. The CVA
model can be calculated based on the singular value decomposition
of the covariance matrix of the two vectors.

Last but not the least, all PCA-based methods are based on the
L2-norm objective function, which is prone to the presence of out-
liers, because the effect of the outliers with a large magnitude is
exaggerated by the use of the L2-norm [15–17]. In modern indus-
try, due to the failure of instrument and experiment errors, outliers
are inevitable in historical database and costly to detect manu-
ally. When a PCA model is trained from this corrupted data set,
the monitoring performance will be far from satisfactory. Recently,
a number of nonlinear manifold-learning based dimension reduc-
tion (DR) techniques have shown promising results and proven to
extract more meaningful information than PCA, such as IsoMap
[18], Local Linear Embedding (LLE) [19,20] and Laplacian eigen-
map  [21]. All of these methods construct the DR model based on a
weighted adjacency graph. In this graph, each vertex represents a
training sample and each weighted-edge linking two  vertices rep-
resents some proximity measure between samples. The objective
of these manifold learning methods is to maximally preserve the
local geometric structure of the data hidden in the underlying adja-
cency graph after projection onto a low dimensional subspace. As
these nonlinear methods are only defined on the training data set
and they cannot explicitly give low dimensional representation for
a novel test sample, in order to solve the out-of-sample problem
there has been extensive work on linear approximation algorithms
of these manifold-learning methods, such as neighborhood pre-
serving embedding (NPE) [22], locality preserving projection (LPP)
[23–26], and isometric projection [27]. Among these linear pro-
jection methods, NPE [28], LPP [29] and various improvement
methods based on them [30–33] have been successfully applied
to process monitoring and achieved some promising results. These
manifold based projection methods can handle the nonlinear and
non-Gaussian characteristics of process data better than PCA as
they can preserve the local geometric structure of the process data
which is totally lost for PCA. In order to deal with the dynamic
process monitoring problem, Miao et al. [30] proposed a method
to construct the adjacency graph based on a time window, which
shows better results than NPE and traditional PCA-based methods.

However, these manifold based projection algorithms still
depend on an adjacency graph. This adjacency graph is usually con-
structed by the K-nearest neighbors or the ε-ball method, where
two samples link with each other if and only if they reside among
each others K nearest neighbors or within the ball of Euclidean
distance ε. The graph construction procedure heavily depends on
pair-wise sample Euclidean distance and can be easily affected
by noise and outliers which are very common in process data.
This means that the graph structure obtained above can be invalid
and fail to express the true underlying manifold and relationships
between samples. DR models derived based on this graph thus
fail to characterize the real process or to give reliable monitor-
ing results. Besides, the parameter selection of the adjacency graph
(K or ε) is an open problem, which can only be set according to
experience. Once the parameter has been set, all the samples in the
adjacency graph will have a fixed size neighborhood. But in reality,
the process data may  have diverse probability density in differ-
ent areas of the feature space. The adjacency graph thus needs to
offer a datam-adaptive neighborhood. All these drawbacks some-
what limit the application of manifold-learning methods in process
monitoring.

Sparse representation (SR) is a recently proposed statistical
modeling tool and has shown to be very powerful in various appli-
cation areas [34,35]. However, SR has not received enough attention
in the field of process monitoring. To our best knowledge, there has

been little work applying SR to model industrial processes. SR can
select a subset of the training data to most compactly express a
given data point, reconstructing this point by a linear combination
of this subset plus an error term by solving an L1-norm minimi-
zation problem. After modeling the training data set through SR, a
sparse weighted adjacency graph and the error-free reconstructed
data can be obtained at the same time [36]. SR explicitly penal-
izes the dense Gaussian error through L2-norm and sparse large
magnitude outliers through L1-norm [35]. As a result, the obtained
adjacency graph is robust to outliers and noise, thus can better
reflect the delicate relationships among training samples compared
with traditional Euclidean distance based graph [37,38]. For pro-
cess data, this relationship among samples not only represents
the geometric topological structure of the data, but also reflects
the dynamic characteristics of the data (auto-correlation). In other
words, the graph constructed from SR can encode much more useful
and meaningful information about the dynamic characteristics and
geometric manifold structure of the process data. Besides, SR graph
has a datam-adaptive neighborhood structure, which is automat-
ically determined and needs not to specify a fixed neighborhood
parameter beforehand. Lastly, the noise-removed data can be fur-
ther utilized for robust process modeling and monitoring.

Inspired by the work of NPE which linearized the classic LLE
algorithm, this paper proposes a novel robust DR technique, named
sparse representation preserving embedding (SRPE), based on the
sparse reconstructive weights and noise-removed data recovered
from robust sparse representation. Compared with traditional PCA
and manifold learning methods, SRPE has the following advan-
tages. Firstly, SRPE performs DR in a clean data space, making it
much more robust to noise and outliers. Secondly, SRPE tries to
preserve the SR graph which encodes rich process dynamics and
local geometric structure of the process data in the projected latent
subspace, making it much more efficient in detecting faults asso-
ciated with abnormal dynamic characteristics. Finally, SRPE is also
a linear DR method, monitoring statistics T2 and SPE can be easily
extended from PCA.

The rest of this paper is organized as follows. First, some pre-
liminary knowledge on NPE is briefly introduced. Then, the SRPE
algorithm and the corresponding novel process monitoring scheme
are detailed. To illustrate the effectiveness and superiority of the
proposed SRPE process monitoring method, extensive comparative
experiments are conducted on a dynamic numerical example and
the Tennessee Eastman (TE) benchmark problem. Conclusions are
drawn in the end.

2. Preliminary knowledge on neighborhood preserving
embedding

NPE is a linear approximation algorithm to the classic LLE man-
ifold learning method. In the NPE model, a training sample is
first reconstructed by a linear combination of a few of its nearest
neighbors. The objective of NPE is to preserve this reconstruction
relationship in the projected low dimensional subspace. Because of
its elegancy and effectiveness, NPE has attracted attention in both
the computer vision and process monitoring communities. Suppose
the training data set X = {x1, x2, . . .,  xn} ⊆ Rm consists of n sample
vectors in an m-dimensional real-valued feature space. NPE aims at
learning a linear projection matrix A ∈ Rm×p(p < m), where p is the
dimension of the latent subspace. The NPE algorithm procedure can
be summarized as follows.

(1) Constructing the adjacency graph: The K nearest neighbors or
the ε-ball method can be adopted for graph construction: Two
samples are linked if one is among the other’s K nearest neigh-
bors or one is within the other’s Euclidean distance ε-ball.
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