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a  b  s  t  r  a  c  t

This paper  studies  an online  identification  algorithm  for batch  processes  incorporating  priori  process
knowledge  of  pole  and  zero  positions.  The  knowledge  is available  to  control  engineers  and  can  be
exploited  to improve  the accuracy  of the  identified  process  model.  To  reduce  the  computation  burden  of
directly  invoking  Lyapunov  inequality,  a bound  on  the  identified  parameters  is  imposed  to  enforce  the
match  between  the  priori  knowledge  and  identified  model.  The  bound  is  recursively  calculated  according
to the  newly  obtained  model.  The  proposed  identification  method  uses  the  information  not  only from  the
time  direction  but also  along  the  batch  direction  to  improve  the identification  performance  from  batch
to  batch.  A filter  is  introduced  to suppress  the  variation  on  the  identified  parameters.  Finally,  numerical
simulations  verify  the  performance  and  robustness  of the  proposed  method.
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1. Introduction

In the era of modern process control, model has an impor-
tant role in lots of advanced control techniques, such as model
predictive control (MPC) [1–5]and adaptive control [6–10]. Gen-
erally speaking, there are two schools of methods to establish a
mathematical model – principle based and data based. In the first
method, various physical conservation laws are used to link the
input to the output with a bunch of partial differential equations
(PDEs) and ordinary differential equations (ODEs). These meth-
ods require tedious procedures and sophisticated techniques to
solve the differential equations for the control purpose. More-
over, these differential equations usually contain some unknown
parameters that need to be further determined by experiments
or other approaches. Unlike the methods above, system identifi-
cation is an empirical method to extract model information from
the process input and output data; thus there are not the afore-
mentioned obstacles in this method. For the past few decades, this
topic has been extensively studied [10–14]. Most of these studies
focused on the conditions and methods to capture the dynamics of
continuous processes asymptotically. Although these conventional
identification methods can apply to batch processes, it often fails to
yield satisfactory results, since the dynamics between continuous
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and batch processes is quite different [15]. For example, the ulti-
mate goal for the online conventional identification is lim

t→∞
�̂(t) = �0,

where �̂(t) stands for the estimated parameters of the process and
�0 is the true parameters of the process, provided that the process
can be delineated by the specific model structure and the param-
eters. But it is not that plausible for batch processes, owing to the
finite duration and non-steady state of batch processes. Therefore,
it is necessary to develop new identification methods for batch
processes.

There are few literatures attributing to this topic. Ma  and
Braatz [16] developed a stopping criterion for off-line batch process
identification. The identification terminates when the worst-case
performance index satisfies certain specifications. Tayebi [17] pro-
posed a continuous-time iterative learning adaptive control for
robot manipulator with the Lagrangian dynamics assumption. Chi
and his co-workers [18] extended the idea to discrete-time sys-
tems. The identification method included in both papers estimated
the parameters in a two-time dimensional framework without its
performance in the transient period discussed. Golshan and Mac-
Gregor [19] focused on the closed-loop identifiability condition for
batch processes. They argued that adding a dither signal or shifting
the control trajectory in a few batches is sufficient for the processes’
identifiability. They also proposed to unfold the input and output
data in a two-time dimensional fashion. Cao and his colleagues [15]
studied the sufficient conditions for almost sure convergence of a
two-time dimensional recursive least squares (2DRLS). It was also
pointed out that the severe variation of the parameters identified
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along the time direction was a defect of 2DRLS, which necessitates
constraints on the estimated parameters into identification.

Constraints, a typical form of representing the priori knowl-
edge of process, are ubiquitous in states estimation for refining
the posterior estimates. Generally speaking, there are three types
of approaches for constrained states estimation. The first method
named clipping is to project the posterior estimates into the
constrained regions [20,21]. The second method named accep-
tance/rejection is commonly adopted in constrained particle
filtering [22]. Its underlying idea is to refine the posterior distribu-
tion by discarding the particles non-compliant with the constraints.
The other method is to handle the constraints directly within
the optimization. A typical example is moving horizon estimator
[23,24]. Nevertheless, there are few papers addressing the con-
strained identification topic. Ikonen and Najim [25] studied using
constraints to incorporate the priori process knowledge. They also
pointed out that it was a difficult problem to consider the con-
straints on poles or zeros. Bruwer and MacGregor [26] studied the
experimental design for process identification. They only addressed
the input and output constraints via the D-optimal technique.

It is known that most processes in nature are stable, thanks to
various conservation laws. Hence, this paper intends to merge the
priori knowledge on zeros and poles into identification to further
enhance the corresponding performance. The identification uses
the current time input and output data to refine the estimated
parameters of the previous batch. To circumvent the computa-
tion issue of directly applying Lyapunov inequality, a bound is
introduced to allow the estimated parameters to achieve a subop-
timal solution. The bound is also recursively calculated by simple
linear matrix inequalities (LMIs). A filter is introduced to overcome
the shortcoming of 2DRLS by smoothing the estimated parame-
ters. The paper is organized as follows. Section 2 revisits the basics
of recursive least squares (RLS) and 2DRLS and provides the moti-
vation of this paper. Section 3 develops the algorithm. A detailed
analysis associated with the algorithm is given in Section 4. Numer-
ical simulations demonstrate the performance and robustness in
Section 5. Conclusions are drawn in Section 6.

2. Revisit of RLS and 2DRLS

It has been well known that most batch processes possess
certain nonlinearity. In most situations, the process variables are
controlled to track a certain batch-wisely identical trajectory,
which enables the control engineers to adopt a collection of linear
models to approximate the dynamics. It has been reported that this
idea has been successfully applied on the injection velocity control
in injection molding, a classical example of batch processes [27–29].
To avoid obscuring the focus, only the autoregressive exogenous
(ARX) model will be discussed in this paper. Consider the following
ARX model:

yk(t) + a1,0yk(t − 1) + a2,0yk(t − 2) + · · · + ana,0yk(t − na)

= b1,0uk(t − d) + b2,0uk(t − d − 1) + · · ·
+ bnb,0uk(t − d − nb + 1) + ek(t) (1)

where yk(t) and uk(t) are, respectively, the process output and con-
trol input of the tth time instant and kth batch. d stands for the
delay of the process. na,  nb are the order of process output and
input dynamics. a1,0, a2,0, . . .,  ana,0 and b1,0, b2,0, . . .,  bnb,0 are the
output and input parameters. {ai,0} and {bi,0} are a function of time.
It is also noted that the parameter sequence is batch invariant due
to the invariance of input profile. Apparently, if the input profile
is constant, the parameters {ai,0} and {bi,0} reduce to constants as
well. {ek(t)} is subject to identical independent distribution and

{
E[ek(t)] = 0

E[ei(m)ej(n)] = �2ıi,jım,n

(2)

Here ıi,j, ım,n are Kronecker delta, and ıi,j = 1 if and only if i = j. Eq.
(1) can be rewritten as

yk(t) = �T
k (t)�0(t) + ek(t) (3)

And �k(t) and �0(t) are denoted as follows:

�T
k (t) =

[−yk(t − 1) −yk(t − 2) .  . . −yk(t − na)

uk(t − d) uk(t − d − 1) . . . uk(t − d − nb + 1)]

(4)

and

�T
0 (t) =

[a1,0(t) a2,0(t) . . . ana,0(t)

b1,0(t) b2,0(t) . . . bnb,0(t)]
(5)

The length of both vectors is n� = na + nb.  To resolve the parameters
tracking problem, two identifying algorithms – RLS with forgetting
factor and 2DRLS will be revisited.

RLS with forgetting factor [10]:

�̂k(t) = �̂k(t − 1) + Kk(t)[yk(t) − �T
k (t)�̂k(t − 1)] (6a)

Kk(t) = Pk(t − 1)�k(t)
� + �T

k
(t)Pk(t − 1)�k(t)

(6b)

Pk(t) = 1
�

[
Pk(t − 1) − Pk(t − 1)�k(t)�T

k
(t)Pk(t − 1)

� + �T
k

(t)Pk(t − 1)�k(t)

]
(6c)

2DRLS [15]:

�̂k(t) = �̂k−1(t) + Kk(t)[yk(t) − �T
k (t)�̂k−1(t)] (7a)

Kk(t) = Pk−1(t)�k(t)

1 + �T
k

(t)Pk−1(t)�k(t)
(7b)

Pk(t) = Pk−1(t) − Pk−1(t)�k(t)�T
k
(t)Pk−1(t)

1 + �T
k

(t)Pk−1(t)�k(t)
(7c)

Here � stands for the forgetting factor; usually selected between
0.98 (with memory size 50) and 0.995 (with memory size 200)
[10]. 2DRLS distinguishes RLS with forgetting factor on two  aspects.
First, it is the way to update the three equations. Unlike RLS, 2DRLS
updates the three equations from the batch direction (k − 1 → k)
instead of the time direction (t − 1 → t). Second, there is a forgetting
factor involved in RLS, while 2DRLS does not have such a parameter.
As stated before, the reason is that the process is time-varying from
the time direction, but batch invariant from the batch direction. To
further compare these two methods, the following example will be
examined [15].

G(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.69z−1 + 1.419z−2

1 − 1.582z−1 + 0.5916z−2
t ∈ [0,  150)

(1.69 − 0.2 ∗ t − 150
150

)z−1 + 1.419z−2

1 − 1.591z−1 + 0.5916z−2
t ∈ [150, 300)

1.49z−1 + 1.419z−2

1 − 1.591z−1 + 0.5916z−2
t ∈ [300, 400]

(8)

Fig. 1 shows the performance comparison between RLS with a
forgetting factor 0.98 and the 50th batch identification of 2DRLS.
It apparently shows that 2DRLS stays closer to the true parame-
ter value than RLS with forgetting factor, except with the severe
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