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a  b  s  t  r  a  c  t

The  problem  of robust  adaptive  predictive  control  for a class  of  discrete-time  nonlinear  systems  is
considered.  First,  a parameter  estimation  technique,  based  on an uncertainty  set  estimation,  is  formu-
lated. This  technique  is able  to  provide  robust  performance  for nonlinear  systems  subject  to  exogenous
variables.  Second,  an  adaptive  MPC is developed  to use  the  uncertainty  estimation  in  a  framework  of
min–max  robust  control.  A Lipschitz-based  approach,  which  provides  a conservative  approximation  for
the min–max  problem,  is  used  to  solve  the control  problem,  retaining  the computational  complexity  of
nominal  MPC  formulations  and  the  robustness  of  the min–max  approach.  Finally,  the set-based  estima-
tion  algorithm  and  the  robust  predictive  controller  are successfully  applied  in two  case  studies.  The first
one is the  control  of  anonisothermal  CSTR  governed  by  the  van  de  Vusse  reaction.  Concentration  and  tem-
perature  regulation  is considered  with  the simultaneous  estimation  of the  frequency  (or  pre-exponential)
factors  of  the  Arrhenius  equation.  In  the  second  example,  a biomedical  model  for  chemotherapy  control
is  simulated  using  control  actions  provided  by  the  proposed  algorithm.  The methods  for  estimation  and
control  were  tested  using  different  disturbances  scenarios.

©  2016  Published  by  Elsevier  Ltd.

1. Introduction

Model predictive control (MPC) has experienced considerable
attention in the academic literature in the last two decades. More-
over, it has also been largely applied by industries, due to its ability
to enforce constraints and handle multivariable process effectively
and efficiently. However, the presence of uncertainty in the MPC
problem formulation remains a challenging topic. The presence of
uncertainty requires feedback and optimization over a sequence
of control laws rather than optimization over sequences of con-
trol actions, as in nominal MPC  [19]. Despite academic effort in
the design of robust nonlinear model predictive control (NMPC)
systems, the problems associated with parametric uncertainties
remains a considerable challenge in applications. The presence
of parametric uncertainties can have severe implications in the
implementation of reliable NMPC systems. In classical control, this
task can be handled using a vast array of adaptive control and
adaptive estimation techniques. The situation in MPC  poses some
additional challenges. The main problem with the application of an
adaptive control approach in NMPC systems is that the uncertain
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parameters may  impact the quality of the model predictions dras-
tically and, hence, the performance of the control system. It is
therefore imperative that the NMPC approach preserves robust-
ness to parametric uncertainties while taking full advantage of the
potential NMPC performance gains.

The problem of using measurements for online update of model
parameters in MPC  (so called adaptive MPC) has received some
attention in the literature. In general, the model and the uncer-
tainty descriptions of a robust MPC  are configured for a nominal set
of operating conditions that are typically not updated. The nominal
parameter uncertainties are thus lumped with other structured or
unstructured uncertainty descriptions which yields conservative
robust control systems. Parametric uncertainty is usually handled
by imposing bounds on the unknown parameters. Various robust
MPC  mechanism can then be employed to mitigate their impact on
the model predictions and the MPC  system. Min–max robust MPC
approaches can be used to handle such parametric uncertainties
(see [23] and the references therein). The conservatism associated
with such approaches can be overcome if one is able to antici-
pate the effect of future changes in the uncertainties. In the case
of adaptive MPC, the objective is to use online learning algorithms
that use plant measurements to update the uncertain parameters.
Such algorithms are usually equipped with some guarantees of con-
vergence of the parameters in a way that can be used to forecast
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their impact on future model predictions. For linear systems some
results are available. In [10], an adaptive approach is considered
where an exponential decay for parametric uncertainty is used in
the model prediction. An interesting result was proposed in [17]
where a persistency of excitation condition is used to prove that
robust feasibility is preserved if no states constraints are used.

In a recent study [26], a set-membership adaptive MPC  approach
was proposed. In this technique, a class of linear systems rep-
resented by impulse response coefficients convolution models is
considered. Under the assumption that the model of the uncertain
plant belongs to a class of linear systems with bounded impulse
response coefficients, a set-membership update strategy is used
to identify models that are consistent with past input-output
responses of the uncertain linear system. The technique is shown
to provide accurate set membership assignment and guarantees
robust performance of the unknown linear systems. In the con-
text of the current study, the approach proposes to update the
parameters following a model set-membership approach following
an empirical model approach. Furthermore, it is limited to open-
loop stable systems, with the possibility of integrating behaviour. A
similar approach is proposed in [6] where a set membership identi-
fication technique due to [20] is used to identify nonlinear systems
from a class of Lipschitz nonlinear operators based on the closeness
of the process data. Again, the approach is limited to open-loop
stable systems. The current study provides a robust adaptive sta-
bilization result for a class of uncertain nonlinear systems. The
parameterization is assumed to be known but the uncertainty in
the parameters can be effectively updated in real-time to minimize
the impact of the uncertain parameters.

For the adaptive MPC  control of nonlinear systems, some
authors have proposed the use of adaptive neural network mod-
els (for example see [5,4,24]). For nonlinear constrained systems,
[1] proposed a robust framework for continuous time systems, in
which the transient effect of parameter estimation error was  explic-
itly used in the robust control problem. In [3], the previous work
was extended for continuous systems with disturbances. Finally, an
adaptive robust economic MPC, based on the results found in [1,3],
was proposed in [14].

Another framework to design an adaptive predictive controller
considers the use of Kalman Filters and Moving Horizon Estima-
tion (MHE) to obtain estimates of the parameters. In this approach,
the state vector is augmented with the unknown parameter val-
ues under the assumption of a constant parameter vector [25]. In
the context of nonlinear adaptive MPC, this technique was  used
by [9] for joint estimation using an Extended Kalman Filter (EKF)
for a polymerization reactor. A combination of MHE  and MPC  in
the adaptive framework is shown in [8], where the optimal dos-
ing of cancer chemotherapy problem is addressed. This approach
can be applied to a large class of nonlinear systems. However, the
dynamic uncertainty estimation for application in a robust MPC
problem is not a trivial problem. Moreover, the computation of the
parameter estimates using an MHE  approach increases the com-
putational cost, since two nonlinear optimization problems should
be solved sequentially. The presented solution proposes the use of
an algorithm that allows the dynamic uncertainty set update and
preserves the computational cost of usual nonlinear MPC, leading
to an implementable robust algorithm.

In this work, we establish a theoretical basis for the analysis
of robust adaptive MPC  control system subject to exogenous dis-
turbances for a class of discrete-time nonlinear control systems.
The result generalizes the continuous-time approach first pro-
posed in [1]. No claims are made concerning the computational
requirements of the proposed min–max approach to the adap-
tive MPC  technique. However, it is argued that a Lipschitz-based
approach provides a conservative approximation of the min–max
approach that retains all of the stability and robustness properties.

The uncertainties associated with the parameters are handled
using a new set-based estimation approach for a class of nonlinear
discrete-time systems that guarantees contraction of the uncer-
tainty set in the presence of a persistency of excitation condition.
Moreover, it is shown how this set-based approach can be for-
mulated in the context of nonlinear adaptive MPC  approach for
discrete-time systems in the presence of parameter uncertainties
and exogenous disturbances.

The remainder of the paper is structured as follows. The problem
description is given in Section 2. The parameter estimation rou-
tine is presented in Section 3. Two  approaches to robust adaptive
model predictive control are detailed in Section 4. This is followed
by a simulation example in Section 6 and brief conclusions in
Section 7.

2. Problem description

Consider the uncertain discrete-time nonlinear system:

xk+1 = xk + F(xk, uk) + G(xk, uk)� + ϑk � F(xk, uk, �, ϑk) (1)

where the disturbance ϑk ∈ D  ⊂ Rnd is assumed to satisfy a known
upper bound ||ϑk||≤ Mϑ < ∞.  The objective of the study is to
(robustly) stabilize the plant to some target set � ⊂ Rnx while sat-
isfying the point-wise constraints xk ∈ X  ∈ Rnx and uk ∈ U ∈ Rnu ,
∀k ∈ Z.  The target set is a compact set, contains the origin and
is robustly invariant under no control. It is assumed that � is
uniquely identifiable and lies within an initially known compact
set �0 = B(�0, z�) where �0 is a nominal parameter value, z� is the
radius of the parameter uncertainty set.

Remark 1. In this study, the exogenous variable ϑk represents
an unstructured bounded time-varying uncertainty. We  do not
provide any additional structure, such as a state dependent dis-
turbance matrix, since this is assumed to be expressed by the term
G(xk, uk)� in (1).

3. Parameter and uncertainty set estimation

In this section, we present and analyze the proposed set-based
parameter estimation technique.

3.1. Parameter adaptation

The preferred parameter estimation technique is first presented.
The main idea behind the proposed technique is the definition of an
implicit regression model. The implicit model is based on the defini-
tion of a vector of auxiliary variables, denoted by �k. The dynamics
of �k forms the basis for the proposed estimation approach.

The first element required is filtered form of the regressor vec-
tor G(xk, uk) denoted by ωk. The vector ωk is obtained using the
following recursion:

ωk+1 = ωk + G(xk, uk) − Kkωk, ω0 = 0 (2)

where Kk is a correction factor at time step k. Note that ωk has the
same dimension as G(xk, uk).

We  let �̂k be the vector of parameter estimates at time step k.
Using the process model and the filter (2), we propose the following
state predictor:

x̂k+1 = x̂k + F(xk, uk) + G(xk, uk)�̂k+1 + Kkek − ωk(�̂k − �̂k+1)

+ Kkωk(�̂k − �̂k+1) (3)

where ek = xk − x̂k is the state estimation error at time step k. The
state predictor is used to generate information about the parameter
estimates.
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