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a  b  s  t  r  a  c  t

Traditional  data-based  soft  sensors  are  constructed  with  equal  numbers  of  input  and  output  data  samples,
meanwhile,  these  collected  process  data  are  assumed  to be clean  enough  and  no  outliers  are  mixed.
However,  such  assumptions  are  too  strict  in  practice.  On  one  hand,  those  easily  collected  input  variables
are  sometimes  corrupted  with  outliers.  On  the  other  hand,  output  variables,  which  also  called  quality
variables,  are  usually  difficult  to  obtain.  These  two problems  make  traditional  soft  sensors  cumbersome.
To  deal  with  both  issues,  in  this  paper,  the  Student’s  t distributions  are  used  during  mixture  probabilistic
principal  component  regression  modeling  to tolerate  outliers  with  regulated  heavy  tails.  Furthermore,  a
semi-supervised  mechanism  is incorporated  into  traditional  probabilistic  regression  so  as  to deal  with
the  unbalanced  modeling  issue.  For  simulation,  two case  studies  are  provided  to  demonstrate  robustness
and reliability  of  the  new  method.

©  2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

A soft sensor is an inferential model that characterizes quantitative relationships between process variables that are easy to measure
and those that are not [1]. The main advantage of soft sensor is that it can provide reliable, fast and low-priced estimations for important
variables [2,3]. For these reasons, soft sensors have been widely used in industrial processes to estimate those quality and key variables
that are difficult to measure online [4–8].

Traditional soft sensors are typically constructed upon first principal strategies that require process knowledge and expert experiences
[9]. Besides time-consuming analysis, such strategy can also suffer from the lack of sophisticated process kinetic knowledge which can
be commonly encountered for chemical processes [10]. As an alternate, data-based soft sensors can be effectively built by requiring
little process knowledge and expert experiences [11]. In this sense, data-based soft sensors such as multivariate regression, principal
component regression (PCR) and partial least squares (PLS) have been popular over the past few decades [6,12]. Originally, PCR and PLS are
constructed regardless of the underlying uncertainty introduced by data noise [13]. To overcome this issue, the probabilistic definitions
on the framework of latent variable models have been developed, the derived model are probabilistic PCR (PPCR) and probabilistic PLS
(PPLS) [14,15]. By assigning a Gaussian distribution for each variable, the probabilistic methods should be more extendable and elegant in
modeling with the Bayesian inference mechanism [16]. For example, the PPCR can be either extended as a mixture model for multimode
modeling or modified as a fully Bayesian method so as to conduct the model selection for latent space dimensionality [17,18].

Although there are many potential benefits, a main practical problem is the fact that all these methods are designed with Gaussian
based assumptions. So when non-Gaussian variations such as outliers are introduced, they can be susceptible by outliers since the Gaussian
distribution with weak outlier-tolerant mechanisms can be easily skewed by modeling layouts [19,20]. Unfortunately, it is well known that
most industrial datasets contain outliers due to incorrectly observed or recorded process measurements [11,21]. On the other hand, manual
evaluation and discard can be time consuming and inefficient [22]. Moreover, simply case deletion of those outliers can lose important
information since one has to discard the whole sample just because only one ‘dirty’ entry record. Recently, some studies have made attempt
to develop the Student’s t based probabilistic models so as to deal with modeling outliers [23–25]. Compared with the Gaussian distribution
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which is commonly appeared for constructing PPCR and PPCA, the Student’s t counterpart shows more stability and compatibility since
the heavy tail part that explains the noise is usually adjusted by the parameter called degree of freedom which can be naturally adapted
from the training procedure [26,27]. In this sense, the Student’s t distribution is more robust to outliers than the Gaussian one [28,29].
Followed by this idea, this work tries to introduce the Student’s t mechanism for robust probabilistic soft sensor development.

Another common problem for data-based soft sensors is that they are designed with the demand that modeling data of output variables
should have the same length as input variables. In this paper, the dataset with both input and output samples are annotated as labeled
data, while those with no output assignments are regarded as unlabeled ones. Therefore, most data-based soft sensors are developed upon
completely labeled situations. However, as mentioned above, output variables such as quality variables can be hardly observed or sampled
online and one needs to take offline lab endeavors for numerical details. As a matter of fact, for modern processes with large volumes
of measured input dataset, one can hardly provide the same amount of output counterpart and only a small subset of input samples can
undergo lab efforts and are attached with output labels. In this case, modeling performance cannot be guaranteed when a small portion of
labeled samples are employed (learning with labeled data alone also refer to the down sampling mechanism [30]). However, if the omitted
unlabeled samples are incorporated, the soft sensor performance can be improved [31]. Such procedures by learning with partially labeled
dataset are usually denoted as semi-supervised learning [32,33]. Recently, the semi-supervised strategy has been proposed for PCR and
successfully applied into chemical processes [3,31]. However, such models are still limited to Gaussian assumptions, and can be susceptible
by those outliers. In fact, both input outliers and low-rate output sampling mechanism do exist simultaneously in practical industrial
systems. In such case, all aforementioned schemes like outlier case deletion and input down sampling mechanisms can be unreliable since
none of them can make use of modeling information effectively.

The motivation of this article is to propose a novel regression model that can cope with the modeling outliers as well as the uneven length
of output variables. First, the conventional mixture PPCR (MPPCR) is modified with the Student’s t distribution so as to conduct the robust
modeling with potential outliers. Notice that the developed robust method is designed with mixture form so as to deal with the multimode
process data. Based on the robust mixture model, a semi-supervised learning mechanism is further incorporated so that the proposed
model can deal with the unbalanced output samples. During the online soft sensing procedure, for each new coming measurement, we
first estimate the output values from each local model and then align them softly with the corresponding weight. The global estimation
is considered as the current time production quality. Notice that the local weight is calculated as the posterior of the measurement with
respect to each local model, which can be achieved by Bayes rule.

The rest of paper is organized as follows. In Section 2, the conventional mixture PPCR is revisited, followed by the introduction of robust
mixture PPCR model with the EM algorithm. Based on that, the robust soft sensor is developed on the basis of semi-supervised mechanism.
Followed by modeling, the online soft sensing mechanism is developed based on the proposed model. After that, two  case studies are used
to validate the proposed method. Finally, conclusions are made.

2. Preliminaries

2.1. Mixture PPCR

Given N input dataset {xn|xn ∈ RDx }Nn=1 and output {yn|yn ∈ RDy }Nn=1, assume that a set of M mixture local components are combined with
each local component a single PPCR. The generative model for MPPCR seeks to find the relationship between input and output which is
given as [17]:

xn,m = Pmtn,m + �x,m + em, m = 1, 2, . . .,  M (1)

yn,m = Qmtn,m + �y,m + fm, m = 1, 2, . . .,  M (2)

xn =
∑

m

p(m)xn,m (3)

yn =
∑

m

p(m)yn,m (4)

where Pm ∈ RDx×d and Qm ∈ RDy×d are the projection matrixes for input space and output space, Dx and Dy refer to the dimensionalities for

input and output variables, d is the dimensionality for all latent spaces, p(m) is the mixture weight that satisfies
∑M

m=1p(m) = 1. tn,m ∈ Rd×1

is the latent variable for the employed data spaces, additional terms like em ∈ RDx×1 and fm ∈ RDy×1 denote the noise for each space. The prob-
ability distributions for the above model are defined by Gaussian ones as p(tn,m) = N(0, Id), p(en,m) = N(0, �x,mIDx ), p(fn,m) = N(0, �y,mIDy ).

Let zn =
(

xn

yn

)
, Wm =

(
Pm

Qm

)
, �m =

(
�x,m
�y,m

)
, ˚m =

(
˚x,m 0

0 ˚y,m

)
, ˚x,m = �x,mIDx , ˚y,m = �y,mIDy , then p(zn|tn,m) = N(Wmtn,m + �m,

˚m). Therefore, undetermined parameters for PPCR are � = {p(m), Pm, Qm, �x,m, �y,m, �x,m, �y,m}Mm=1
, which can be iteratively estimated

by EM algorithm, one can refer to many literatures for more mathematical details, such as [34].

2.2. Robust MPPCR

In robust MPPCR (RMPPCR), the generative model structure is the same as MPPCR, except for the utilization of Student’s t distribution
for model assumption. Specifically, the priors and likelihoods can be given as [28]:

p(tn,m) = S(tn,m|0, Id, �m) (5)

p(xn|tn,m) = S(xn|Pmtn,m + �x,m, ˚x,m, �m) (6)

p(yn|tn,m) = S(yn|Qmtn,m + �y,m, ˚y,m, �m) (7)
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