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a  b  s  t  r  a  c  t

Resilient  monitoring  systems  (RMS)  are  sensor  networks  that  degrade  gracefully  under  malicious  attacks
on  their  sensors,  causing  them  to project  misleading  information.  This  paper  develops  techniques  to
ensure  resiliency,  namely:  active  data  quality  acquisition,  process  variable  and plant  condition  assess-
ments,  sensor  network  adaptation,  and  plant  decomposition  with  knowledge  fusion.  Based  on these
techniques,  we design  a RMS  for power  plants  and  investigate  its  performance  under  various  cyber-
physical  attacks.  In all  scenarios  considered,  the  system  offers  effective  protection  against  misleading
information  and  identifies  the  plant  condition  – normal  or anomalous  –  in  a reliable  and  timely  manner.

©  2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Resilient plant monitoring systems is a relatively new area of
research. In this section, we briefly characterize these systems,
describe a specific scenario addressed, and outline the techniques
developed in this work.

1.1. What is a resilient plant monitoring system?

Plant monitoring systems are wired or wireless sensor networks
intended to measure process variables (e.g., temperature, pres-
sure, flow rates, etc.), analyze them, and inform the plant operator
about the plant conditions − normal or anomalous. Based on this
information, the operator takes corrective actions, if needed. When
some of the sensors are captured by an attacker, forcing them to
project misleading information (possibly, statistically unrelated to
the actual values of process variables), the identified plant condi-
tions could be erroneous. This may  lead to wrong actions on the part
of the operator and, possibly, a disaster. To prevent this situation,
the monitoring system must possess a capability of autonomously
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identifying the attacked sensors and mitigating their effect (by
discounting or disregarding completely the data they project).
Although the loss of sensors may  lead to degradation of plant condi-
tion assessment, in a well-designed system this degradation should
be “proportional” to the severity of the attack, i.e., graceful. Plant
monitoring systems that possess such a property are referred to as
resilient.

This paper is devoted to developing techniques that can be used
to ensure resiliency, analyzing their properties and, on this basis,
designing and evaluating the performance of a resilient monitoring
system (RMS). A specific application, in terms of which the develop-
ment is carried out, is a simplified model of a power plant, although
a similar approach can be used for other applications as well.

1.2. Scenario and problem addressed

Briefly, the scenario considered in this paper is as follows:

• The monitored plant process variables, Vi, i = 1, . . . , M,  are charac-
terized by probability density functions (pdf’s) fṼi

(ṽi), i = 1, . . . , M.
In practice, the status of the process variables is often character-
ized as being Normal (N) or Anomalous (A). The latter could be,
for instance, Low (L) or High (H). In this case, fṼi

(ṽi) induces a ran-
dom event with the outcomes in {LVi

, NVi
, HVi

}, i = 1, . . . , M.  With
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a slight abuse of terminology, we refer to this event (and similar
events throughout this paper) as a discrete random variable, Vi,
i = 1, . . . M,  with the probability mass function (pmf), p[Vi], defined
on the universal set �Vi

= {LVi
, NVi

, HVi
}, i = 1, . . . , M.

• The plant, G, is also characterized by its status, which is a discrete
random variable, G, with the pmf  p[G] defined by the pmf’s of pro-
cess variables and taking values on �G = {NG, AG}, where NG and
AG denote the normal and anomalous plant statuses, respectively.
Depending on the plant, the anomalous status can be further char-
acterized by specific anomalies, e.g., boiler insulation damaged,
turbine malfunctioning, etc. In each status, plant dynamics may
be different, e.g., described by different transfer functions.

• Each process variable, Vi, is monitored by a sensor, Si (multiple
sensors of a process variable are also considered in the sequel).
If a sensor is under attack, its projected data may  have a pdf,
fS̃i

(s̃i), statistically unrelated to fṼi
(ṽi). In this situation, utilizing

the sensor data in order to assess the process variable may  lead to
a pmf, p̂[Vi], qualitatively different from p[Vi]. For instance, p̂[Vi]
may  indicate that the process variable is Normal, while in reality
it is Low or High.

• The plant status assessment is based on the process variable
assessments, p̂[Vi], i = 1, . . . , M,  and is quantified by a pmf  denoted
as p̂[G], G ∈ {NG, AG}. Since, as indicated above, the process vari-
able assessments may  be erroneous, p̂[G] may  be quite different
from the actual p[G] and, thus, lead to erroneous actions by the
plant operator.

In this scenario, the optimal resilient monitoring system must
be able to identify the status of the plant, G, in such a manner that
the “distance” between the estimated and the actual pmf’s, p̂[G]
and p[G], is minimized, as quantified by an appropriate measure of
distance between the two pmf’s. While this paper is not intended
to resolve this issue, the problem addressed here is: design a plant
monitoring system that degrades gracefully under an attack (i.e., is
resilient), and demonstrate that it performs favorably in comparison
with a non-resilient one (as quantified by a measure of resiliency based
on the Kullback-Leibler divergence [1]).

1.3. Related literature

The literature related to the topic of this paper can be clas-
sified into five groups. The first one is devoted to foundational
issues, where the problems of resilient monitoring and control are
motivated and formulated, [2–6]. The second group includes publi-
cations on control-theoretic methods for attack identification and
alleviation, [7–11]. In these publications, the authors consider LTI
systems with a given state space realization (A, B, C, D) and distur-
bances interpreted as attack vectors. The problem addressed is to
identify the attack and, if possible, mitigate its effect, for instance,
by designing a controller that makes the closed-loop system invari-
ant with respect to the disturbance attack. The main difference of
the current work is that the plant may  be either normal or anoma-
lous (i.e., described by several state space realizations), and the
problem is to identify which plant status indeed takes place, in spite
of the misleading information projected by the sensors.

The third group consists of publications on fault tolerant control,
[12–14]. In these works, it is assumed that a closed-loop system has
multiple sensors and actuators, some of which could be faulty due
to natural or malicious causes. The typical problem here is to deter-
mine the conditions (e.g., the number of sensors and actuators)
under which the closed-loop system performance is maintained
without degradation. The difference of the current work is that,
although multiple sensors may  be present, the goal is to deter-
mine the status of the plant and, if otherwise impossible, tolerate
degradation.

The fourth group consists of research on monitoring communi-
cation channels in order to capture anomalous traffic and correlate
it with a possible attack, [15–19]. In terms of the current work, this
implies the identification of DQ.  While the results of these publi-
cations may  be useful for resilient plant monitoring, they do not
provide methods for process variable and plant condition assess-
ment pursued in the current work.

The fifth group consists of papers on identification of and pro-
tection against data injection attacks intended to mislead state
estimation algorithms, [20–24]. The emphasis of the research
here is on determining optimal positions of “known-secure” sen-
sors, which prevent the damage of the attack, or on utilizing
game-theoretic approaches as quantitative techniques for risk
management.

Our preliminary results on RMS  have been reported in confer-
ence presentations [25–29] and summarized in article [30]. The
current paper, along with reviewing and extending these results,
introduces a decentralized RMS  based on plant decomposition
with knowledge fusion, as a means for combating the curse of
dimensionality. As a result, we design a decentralized RMS  for
power plants and investigate its performance under various cyber-
physical attack scenarios. Note that an ideologically similar but
technically different approach to resilient monitoring of a chemical
reactor system has been reported in a recent paper [31].

1.4. Contributions of this work: Techniques developed and
resilient monitoring system designed

The techniques developed in this work are as follows:

• The “trustworthiness” of a sensor is quantified by a parameter
referred to as data quality (DQ), which takes values on [0, 1],
with 1 indicating that the sensor is totally trustworthy and 0
not trustworthy at all. To identify DQ, we  develop an active data
quality acquisition procedure,  whereby probing signals are applied
to process variables, and the level of disagreement between the
anticipated and the actual response of the sensors is used to quan-
tify their DQ’s.

• The estimates of process variables pmf’s, p̂[Vi], i = 1, . . . , M,  are
calculated based on the data projected by the sensors and their
DQ’s. Since DQ is not a statistical quantity, classical statistics can-
not be used for this purpose. Therefore, we  introduce a model of
the DQ’s effect on the coupling between sensors data and process
variables and, using this model, develop the so-called h-procedure
(which is a modified stochastic approximation algorithm [32]).
Analyzing this procedure, we show that it converges to a steady
state defined by the DQ’s. Specifically, if DQ = 1, it converges to
the actual process variable pmf; as DQ tends to 0, the steady state
of the h-procedure converges to a uniform pmf, implying that in
this limit the sensor measurements carry no information at all.
For all other DQ’s, the conditional pmf  of Vi given the sensor data
is an affine function of DQ. When multiple sensors monitor a pro-
cess variable, the Dempster-Shafer rule [33] is used to combine the
steady states of the h-procedures associated with each sensor.

• The estimate of the plant status pmf, p̂[G], is calculated based on
the statistical plant model (typically given as a set of conditional
pmf’s P[Vi|G], i = 1, . . . , M,  or a joint conditional pmf  P[V1, V2, . . . ,
VM|G]), the estimates of the process variables pmf’s, p̂[Vi], i = 1,
. . . , M,  and the Jeffrey rule [34].

• The above assessments are carried out at each state of the sen-
sor network, where the state is a vector of 1’s and 0’s, with 1
indicating that the corresponding sensor is taken into account
for process variable assessment and 0 that it is not. The qual-
ity of each state is quantified by the entropy (i.e., the level of
uncertainty) of either p̂[G] or p̂[Vi]. The adaptation of the sen-
sor network to the optimal state, i.e., the state with the smallest
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