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a  b  s  t  r  a  c  t

When  a plant  and  its controller  are  sufficiently  linear  and  time-invariant  so  that  they  can  be  represented
by  transfer  functions,  and this  plant  is under  classical  control  (meaning  the controller  can  also  be repre-
sented  by  a transfer  function),  the model-plant  mismatch  (MPM)  that often  plagues  industrial  processes
can be  written  as a closed-form  expression.  This  includes  a variety  of  controllers,  among  which  the ubiq-
uitous  Proportional,  Integral  and  Derivative  (PID)  controller.  The  MPM  expression  can  then  be used  to
identify  a  representative  transfer  function  of  the “true  plant”  from  the  currently  available  plant  model.
The MPM  expression  works  for single-input  single-output  as  well  as  multiple-input  multiple-output  sys-
tems. The  closed-loop  data required  for application  of the  expression  has  to be sufficiently  exciting.  If
significant  disturbances  perturb  the plant  their  values  need to  be available.  In  this  article  the  expression
is  applied  to industrial  data  to show  its applicability.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The situation where only poor process models are available
for control is a common one. When there is a notable difference
between a process and the available model of the process, it is said
that model-plant mismatch (MPM)  is present. This situation is not
only common, but will usually contribute to deteriorated controller
performance. The availability of poor process models is known to
be a source of poor control performance, in fact this is listed as one
of the most significant reasons for poor control performance in the
minerals-processing industry by [1]. The fact that MPM  is however
not limited to the minerals-processing industry is a reason why
research into this area has received some focus in the recent past
[2].

For processes where only poor models are available, [1] states
that the peripheral control tools are as important as the controller
itself. Peripheral control tools constitute all the elements in the con-
trol loop, other than the controller itself, that function to improve
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controller performance. These include fault detection and isolation,
data reconciliation, observers, soft sensors, optimisers and model
parameter tuners. Some of these peripheral tools are addressed for
an ore grinding mill circuit in [3–5].

Many controller design methods make use of a plant model. A
good plant model usually helps to improve controller performance,
but the dynamics of industrial processes can change significantly
over time (as is shown for the example of a milling circuit in
[6]). As soon as the plant dynamics change, MPM  is present and
the controller designed based on the original model will produce
sub-optimal control moves. Examples of the sources of changes in
plant dynamics are maintenance or equipment changes as well
as changes in operating conditions or parameters. In order to
restore the controller performance the process needs to be re-
identified and the controller redesigned, which is a costly and
time-consuming exercise [7]. Apart from the formerly mentioned
problems, process re-identification also often involves intrusive
plant tests that disturb the normal operation of the plant [2].

An alternative to full process re-identification is to firstly iden-
tify the elements in the process transfer function matrix that
contain significant mismatch and to only re-identify these. Algo-
rithms for MPM  detection have been proposed by [2] and [8]. These
algorithms identify the transfer function matrix elements that con-
tain mismatch as well as the significance of the mismatch. This is
useful information that can be used to help assess the need for pro-
cess re-identification. These algorithms do however not supply any

http://dx.doi.org/10.1016/j.jprocont.2015.04.016
0959-1524/© 2015 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.jprocont.2015.04.016
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jprocont.2015.04.016&domain=pdf
mailto:ian.craig@up.ac.za
dx.doi.org/10.1016/j.jprocont.2015.04.016


78 L.E. Olivier, I.K. Craig / Journal of Process Control 32 (2015) 77–86

additional information about the “true plant”, hence there is still a
need for process re-identification (although not as expensive as full
process re-identification) and ad-hoc controller re-tuning.

Model identification techniques that make use of closed-loop
data have been introduced some time ago (see for example [9]
and [10]). A good overview of closed-loop identification is given
by [11] in which different closed-loop identification techniques
are discussed and their characteristic properties are compared.
The methods described by [11] are mostly based on statistical
approaches and do not make explicit use of the transfer functions
representing the system, unlike the method presented in this arti-
cle. A more recent approach to on-line closed loop identification is
given in [12]. Here the joint plant and controller model is identi-
fied using subspace model identification, and thereafter the plant
model is separated assuming the controller model is known a priori.

This paper presents a closed-form expression for the model-
plant mismatch (as first derived in [13]), which can be used
to update the model such that it may  be representative of the
actual plant. This expression is shown to work for multiple-input
multiple-output (MIMO) systems. The main difference between
this article and [13] is the application of the MPM  expression to
industrial data.

Although this method is related to closed-loop identification,
it does make use of the explicit expression for the mismatch to
identify the representative plant model. This implies that the model
structure is known a priori and can simply be updated through the
mismatch expression.

The most common form of advanced control in the process
industry is linear model predictive control [14]. Implementing a
linear MPC  requires a linear process model, typically in the form of
an LTI transfer function. Most plants that use advanced control will
therefore at some point have a good, representative model of the
process. Making the previously known transfer function the start-
ing point for the method is therefore a justified decision, as this is
commonly available.

The sources of mismatch mentioned earlier are either due to
discrete events (such as plant shut-downs) or e.g. slowly degrad-
ing instruments that cause the model to slowly drift over time. It
is therefore sufficient to make use of this method after such events
(depending on their frequency) or at certain times when the control
performance has deteriorated. This supervised approach is prefer-
able for processes where this is the case, rather than on-line model
tracking, which would be preferable in processes where the model
may change drastically at a high frequency.

The newly identified model may  then be used to update the
controller, such that it can perform in an optimal manner. The
expression is however only valid for systems that contain a con-
troller and plant model that can be expressed by means of transfer
functions. This does include an array of controllers, but probably
most importantly it includes PID controllers.

PID control is still very predominant in the processing indus-
try. An industrial survey on grinding mill circuits by [15] found
that more than 60% of the respondents make use of PID control,
which implies a large scope for implementation of the presented
expression.

Another limitation on the expression is that it requires the input
signals to be sufficiently exciting in order to make the implementa-
tion sensible. This limitation is however also present for the MPM
detection algorithms presented by [2] and [8], and also for most
plant identification methods.

The requirement for sufficient excitation means that either suffi-
ciently large (and known) changes are required for the independent
variables (such as achieved with sizeable set-point changes) or
sufficiently large (and known) disturbances should be present, or
both. The expression handles known disturbances directly, but does
not handle unknown disturbances. If it is unavoidable to use data
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Fig. 1. Block diagram of a control loop with model outputs being generated.

without the presence of large unmeasured disturbances their val-
ues should first be estimated for example by making use of a Kalman
filter ([16]). If this is not possible, the MPM  expression described in
this paper may  not yield the desired results.

Identifying the mismatch in the manner proposed in this paper
is equivalent to identifying the additive uncertainty in the model
[17], where the additive model uncertainty is also expressed as the
difference between the plant and the model. Another possibility is
presented by [18] where the output multiplicative uncertainty is
explicitly defined by matching the output of the uncertainty model
to the outputs of a set of known models.

The paper firstly presents the derivation of the MPM  expres-
sion and shows how the representative transfer function model
of the true plant may  be obtained from it. Thereafter the expres-
sion is used in a MIMO  application example to show its usefulness.
Finally the expression is applied to industrial data and the repre-
sentative plant transfer function is calculated by means of the MPM
expression.

2. Model-plant mismatch expression

Consider the one degree of freedom, negative feedback control
loop shown in Fig. 1 in which all signals and transfer functions are
represented in the Laplace domain. G is the plant that generates
the true output y(s), Ĝ is the model of the plant that generates the
model output ŷ(s), Q is the controller, v(s) is any disturbance that
may  be present and r(s) is the reference signal (set-point).

The derivation of the MPM  expression which follows is done for
a general MIMO  system in which all signals may be vectors and all
transfer functions may  be matrices. G, Ĝ and Q are all continuous-
time, linear time-invariant (LTI) systems, represented in the Laplace
domain. G and Ĝ have the dimensions ny × nx and Q has the dimen-
sions nx × ny. y, ŷ, r and v are ny × 1 vectors and u is an nx × 1 vector.
For this derivation the number of manipulated variables in the con-
troller must equal the number of controlled variables in the plant,
and consequently nx = ny.

The reference to the Laplace operator (s) will be dropped for ease
of representation. Let the residual (e) be the difference between the
actual output and the model output as

e = y − ŷ, (1)

e = Gu + v − Ĝu, (2)

e = �Mu + v, (3)

where �M = G − Ĝ is the mismatch. This definition for the mis-
match is equivalent to the definition for additive uncertainty
presented by [17,p. 293]. During this derivation however �M is
used to represent uncertainty of any magnitude, as opposed to the
weighted uncertainty with a restriction on the maximum singular
value in [17] ( �̄(�(jω))  ≤ 1). The control signal (u(s)) is given by

u = Q (r  − y) , (4)

u = Q (r  − [Gu + v]) ,  (5)
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