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a  b  s  t  r  a  c  t

Transport-reaction  processes,  which  are  typically  described  by  parabolic  partial  differential  equations
(PDEs),  play  an  important  role within  the chemical  process  industries.  Therefore,  it is  important  to develop
feedback  control  techniques  that  operate  transport-reaction  processes  in  an  economically  optimal  fashion
in the presence  of constraints  in  the process  states  and  manipulated  inputs.  Economic  model  predictive
control  (EMPC)  is  a predictive  control  scheme  that  combines  process  economics  and  feedback  control  into
an integrated  framework  with  the  potential  of improving  the  closed-loop  process  economic  performance
compared  to  traditional  control  methodologies.  In this  work,  we  focus  on systems  of  nonlinear  parabolic
PDEs  and  propose  a  novel  EMPC  design  integrating  adaptive  proper  orthogonal  decomposition  (APOD)
method  with  a high-order  finite-difference  method  to handle  state  constraints.  The computational  effi-
ciency  and constraint  handling  properties  of  this  design  are  evaluated  using  a tubular  reactor  example
modeled  by  two  nonlinear  parabolic  PDEs.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The development of computationally efficient control methods
for partial differential equation (PDE) systems has been a major
research topic in the past 30 years (e.g., [6]). The design of feed-
back control algorithms for PDE systems is usually achieved on the
basis of finite-dimensional systems (i.e., sets of ordinary differential
equations (ODEs) in time) obtained by applying a variety of spatial
discretization and/or order reduction methods to the PDE system.
The classification of PDE systems, which is based on the proper-
ties of the spatial differential operator into hyperbolic, parabolic,
or elliptic, typically determines the finite-dimensional approxi-
mation approaches employed to derive finite-dimensional models
(e.g., [6,24]). A class of processes described by PDEs within chemi-
cal process industries is transport-reaction processes. For example,
tubular reactors are typically described by parabolic PDEs since
both convective and diffusive transport phenomena are significant.

For parabolic PDE systems (e.g., diffusion-convective-reaction
processes) whose dominant dynamics can be adequately repre-
sented by a finite number of dominant modes, Galerkin’s method
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with spatially global basis functions is a good way among many
weighted residual methods (e.g., [9,21]) to construct a reduced-
order model (ROM) of the PDE system. Specifically, it can be used
to derive a finite-dimensional ODE model by applying approximate
inertial manifolds (AIMs) (e.g., [10]) that capture the dominant
dynamics of the original PDE system. The basis functions used in
Galerkin’s method may  either be analytical or empirical eigen-
functions. After applying Galerkin’s method to the PDE system
and a low-order ODE system is derived, the control system can
be designed by utilizing control methods for linear/nonlinear ODE
systems [6].

One way to construct the empirical eigenfunctions is by apply-
ing proper orthogonal decomposition (POD) (e.g., [23,12,15]) to
PDE solution data. This data-based methodology for constructing
the basis eigenfunctions has been widely adopted in the field of
model-based control of parabolic PDE systems (e.g., [5,25,4,17,15]).
However, to achieve high accuracy of the ROM derived from the
empirical eigenfunctions of the original PDE system, the POD
method usually needs a large ensemble of solution data (snapshots)
to contain as much local and global process dynamics as possible.
Constructing such a large ensemble of snapshots becomes a signif-
icant challenge from a practical point of view; because currently,
there is no general way  to realize a representative ensemble. Based
on this consideration, an adaptive proper orthogonal decomposi-
tion (APOD) methodology was proposed to recursively update the
ensemble of snapshots and compute on-line the new empirical
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eigenfunctions in the on-line closed-loop operation of PDE sys-
tems (e.g., [20,22,26,19]). While the APOD methodology of [26,19]
demonstrated its ability to capture the dominant process dynamics
by a relatively small number of snapshots which reduces the over-
all computational burden, these works did not address the issue
of computational efficiency with respect to optimal control action
calculation and input and state constraint handling. Moreover, the
ROM accuracy is limited by the number of the empirical eigenfunc-
tions adopted for the ROM; in practice, when a process faces state
constraints, the accuracy of the ROM based on a limited number of
eigenfunctions may  not be able to allow the controller to avoid a
state constraint violation.

Economic model predictive control (EMPC) is a practical optimal
control-based technique that has recently gained widespread pop-
ularity within the process control community and beyond because
of its unique quality of effectively integrating process economics
and feedback control (see [8] for an overview of recent results
and references). It deals with a reformulation of the conventional
MPC  quadratic cost function in which an economic (not necessarily
quadratic) cost function is used directly as the cost in MPC, and,
it may, in general, lead to time-varying process operation policies
(instead of steady-state operation), which directly optimize pro-
cess economics. However, most of previous EMPC systems have
been designed for lumped parameter processes described by lin-
ear/nonlinear ODE systems (e.g., [1,2,14,11,13]). In our previous
work ([16,15]), an EMPC system with a general economic cost func-
tion for parabolic PDE systems was proposed which operates the
closed-loop system in a dynamically optimal fashion. Specifically,
the EMPC scheme was developed on the basis of low-order nonlin-
ear ODE models derived through Galerkin’s method using analytical
eigenfunctions [16] and empirical eigenfunctions derived by POD
[15], respectively. However, no work has been done on applying
APOD techniques for model order reduction to parabolic PDE sys-
tems under EMPC. Typically, EMPC will operate a system at its
constraints in order to achieve the maximum closed-loop eco-
nomic performance benefit. Thus, the challenge is to formulate
EMPC schemes that can handle state constraints (i.e., prevent state
constraint violation).

Motivated by the above considerations, in this work, we  apply
APOD to parabolic PDE systems by considering process control
system computational efficiency and some specific constraints
imposed on the process (i.e., state and input constraints), and
propose a novel EMPC design integrating APOD method with a
high-order finite-difference method. The proposed EMPC method is
applied to a non-isothermal tubular reactor where a second-order
chemical reaction takes place and the computational efficiency,
state and input constraint satisfaction, and closed-loop economic
performance are evaluated.

2. Preliminaries

2.1. Parabolic PDEs

We  consider parabolic PDEs of the form:

∂x

∂t
= A

∂x

∂z
+ B

∂2
x

∂z2
+ Wu(t) + f (x) (1)

with the boundary conditions:

∂x

∂z
|z=0 = g0x(0, t),

∂x

∂z
|z=1 = g1x(1, t) (2)

for t ∈ [0, ∞)  and the initial condition:

x(z, 0) = x0(z) (3)

where z ∈ [0, 1] is the spatial coordinate, t ∈ [0, ∞)  is the time,
x(z, t) = [x1(z, t) . . . xnx (z, t)]T ∈ R

nx is the vector of the state

variables (xT denotes the transpose of x), and f(x) denotes a non-
linear vector function. The notation A, B, W,  g0 and g1 is used to
denote (constant) matrices of appropriate dimensions. The control
input vector is denoted as u(t) ∈ R

nu and is subject to the following
constraints:

umin ≤ u(t) ≤ umax (4)

where umin and umax are the lower and upper bound vectors of the
manipulated input vector, u(t). Moreover, the system states are also
subject to the following state constraints:

xi,min ≤
∫ 1

0

rxi
(z)xi(z, t)dz ≤ xi,max (5)

for i = 1, . . .,  nx where xi,min and xi,max are the lower and upper
state constraint for the i-th state, respectively. The function rxi

(z) ∈
L2(0,  1) where L2(0, 1) is the space of measurable square-integrable
functions on the interval [0, 1], is the state constraint distribution
function.

2.2. Galerkin’s method with POD-computed basis functions

To reduce the PDE model of Eq. (1) into an ODE model, we
take advantage of the orthogonality of the empirical eigenfunctions
obtained from POD ([23,12]). Specifically, using Galerkin’s method
([7,10]), a low-order ODE system for the PDEs of Eq. (1) describing
the temporal evolution of the amplitudes corresponding to the first
mi eigenfunctions of the i-th PDE state in Eq. (1) has the following
form:

ȧs(t) = Asas(t) + Fs(as(t)) + Wsu(t)

xi(z, t) ≈
mi∑
j=1

aij
s (t)�ij(z), i = 1, . . .,  nx

(6)

where as(t) = [aT
s,1(t) . . . aT

s,nx
(t)]

T
is a vector of the total eigen-

modes, as,i(t) = [ai1
s (t) . . . aimis (t)]

T
is a vector of the amplitudes of

the first mi eigenfunctions, aij
s (t) is the j − th eigenmode of i − th PDE,

As and Ws are constant matrices, Fs(as(t)) is a nonlinear smooth
vector function of the modes obtained by applying weighted resid-
ual method to Eq. (1), and {�ij(z)}

j=1:mi
are the first mi dominant

empirical eigenfunctions computed from POD for the i-th PDE state,
xi(z, t).

3. EMPC of parabolic PDE systems with state and control
constraints

3.1. Adaptive proper orthogonal decomposition

Compared with POD, APOD is a more computationally efficient
algorithm because it only needs an ensemble of a small number of
snapshots in the beginning. It can complete the recursive update
of the computation of the dominant eigenfunctions, while keep-
ing the size of the ensemble small to reduce the computational
burden of updating the ensemble once a new process state mea-
surement is available. Moreover, APOD can also adaptively adjust
the number of the basis eigenfunctions under a desired energy
occupation requirement, �. Out of N possible eigenvalues from the
covariance matrix of the ensemble, the most dominant m eigen-
values of the covariance matrix occupies � energy of the whole
ensemble, i.e.,

∑m
j=1�j/

∑N
j=1�j ≤ �. Then, the computational effi-

ciency of the control system whose construction is based on the
ROM with the dominant eigenfunctions will be improved due to the
adaptive property of APOD [26]. Since the basis eigenfunctions are
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