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a  b  s  t  r  a  c  t

This paper  presents  a  novel  methodology  for  simultaneous  optimal  tuning  of  a fault detection  and  diagno-
sis (FDD)  algorithm  and  a feedback  controller  for a chemical  plant  in the  presence  of stochastic  parametric
faults.  The  key idea  is  to propagate  the  effect  of time  invariant  stochastic  uncertainties  onto  the  measured
variables  by  using  a Generalized  Polynomial  Chaos  (gPC)  expansion  and  the  nonlinear  first  principles’
model  of  the process.  A  bi-level  optimization  is proposed  for  achieving  a trade-off  between  the  fault
detectability  and the  closed  loop  process  variability.  The  goal  of the  outer  level optimization  is to  seek  a
trade-off  between  the efficiency  of detecting  a fault and  the  closed  loop  performance,  while  the  inner  level
optimization  is  designed  to optimally  calibrate  the  FDD  algorithm.  The proposed  method  is illustrated  by
a continuous  stirred  tank  reactor  (CSTR)  system  with  a  fault  consisting  of  stochastic  and  intermittent
variations  in  the  inlet  concentration.  Beyond  achieving  improved  trade-offs  between  fault  detectability
and  control,  it is shown  that the computational  cost  of  the  gPC  model  based  method  is  lower  than  the
Monte  Carlo  type  sampling  based  approaches,  thus  demonstrating  the  potential  of  the  gPC  method  for
dealing  with  large  problems  and  real-time  applications.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Equipment failures and abnormalities defined as faults are
a major source of economic loss and safety hazards in many
industries thus creating a need for fault detection and diagnosis
algorithms. Most fault detection and diagnosis (FDD) systems are
implemented at a supervisory hierarchical level above the control
systems’ level and use measured variables that are also used for
feedback control. While there is a large body of literatures on FDD
[1–6], the issue of integration between control and fault diagno-
sis algorithms has not been addressed as much in particular in the
presence of stochastic faults.

A key challenge for integrating control and FDD is that they often
have competing objectives. For instance, if the controlled variables
are to be used for detection, better control means that the con-
trolled variable deviates little from the set point, while FDD requires
sufficiently large deviations for effective detection purposes [7,8].
Similar trade-offs occur also when the manipulated variables are
used since good detection generally translate into large control
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actions as shown in this work. Moreover, process disturbances,
nonlinearity and model error make the integration of FDD with
control a challenging task [9]. Several methods have been pro-
posed for optimal simultaneous tuning of a FDD  algorithm and a
controller based on robust norms. To synthesize the controller and
diagnosis algorithms, a four parameter controller setup as a gener-
alization of the two degrees of freedom controllers was proposed
[10,11]. This method, however, did not explicitly address the cost
of unobservable faults and their stochastic nature.

To improve the fault detectability in the presence of bounded
uncertainties, set-based (separating inputs) FDD  techniques have
been used for active fault diagnosis [9,12,13]. These methods inject
auxiliary signals into the system to enhance the detectability of
faults. Instead of introducing an auxiliary signal in the current
study, the controller is synthesized together with the fault detec-
tion algorithm.

Following the above, the current work addresses the problem
of optimal simultaneous tuning of a FDD algorithm and the con-
troller’s parameters in the presence of time varying stochastic
intermittent parametric faults, where the FDD is based on a nonlin-
ear first principle model. The proposed approach seeks a trade-off
between the fault detectability and the closed loop performance.
Since the stochastic parametric faults (inputs) are considered, it
is necessary to quantify the effect of these inputs on both the
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variables used in feedback control and for fault detection. One
option to do such propagation and quantification is by Monte Carlo
(MC) type sampling based simulations, which are computationally
demanding since they require a large number of simulations of the
nonlinear process model to get accurate results. Computational effi-
ciency is critical in the current problem, since the propagation of the
stochastic faults on other variables of interest has to be performed
repetitively within the optimization algorithms used to achieve a
trade-off between detection and control. Uncertainty analysis and
propagation using the Generalized Polynomial Chaos (gPC) expan-
sion has been studied by a number of authors in different areas,
and has been reported to be more efficient as compared to MC
simulations [14–18]. The advantage of gPC is that it can propa-
gate a complex probability distribution into a variable of interest
and explicitly calculate the statistics of the resulting outputs by
analytical formulae [19,20].

The current work investigates the problem of optimal simulta-
neous tuning of a FDD algorithm and a controller in the presence
of stochastic time varying disturbances by using the gPC expan-
sions for stochastic parametric faults (inputs) and measured output
variables. A bi-level optimization algorithm proposed in this work
balances the fault detectability and the closed loop control perfor-
mance. In both the works by Mesbah et al. [21] and our previous
work [22] presented at the same meeting, the PDF profiles gen-
erated with the gPC models were utilized to enhance the fault
detectability by minimizing the overlap between the PDF profiles.
Unlike the referenced work [21], the previous study done by the
authors [22] and the current work synthesize the fault detection
algorithm together with the controller to seek an optimal trade-off
between detection and control. Also, the current work differs from
previous studies in the proposed fault detection algorithm that it is
based on a maximum likelihood criterion to detect the fault using a
gPC model. Preliminary results of seeking a trade-off between the
fault detectability and the closed loop control performance were
outlined in [22]. A significant reduction in computational effort was
observed by using the gPC method, as compared with the MC  samp-
ling based approaches, which is further investigated in this work.
Also, the earlier work by the authors [22] is extended by combin-
ing the gPC theory with the maximum likelihood based estimation
to recursively estimate the stochastic parametric faults (inputs)
during transients, while in our previous study only the steady
state fault detection problem was considered. The application of
the gPC model with maximum likelihood dynamically estimates
the value of the stochastic fault over a time moving window. The
estimation results can be used as a real-time process monitoring
strategy for detection of stochastic faults in nonlinear systems.
While previously reported parameter estimation approaches based
on combinations of the gPC with Bayesian and maximum likeli-
hood have been applied in an offline fashion [23–26], the current
work proposes a gPC based methodology for online detection of
faults.

To summarize, the novel contributions in this current work are:
(i) The use, in the context of integration between fault diagnosis
and control, of an intrusive gPC approach for uncertainty propa-
gation and quantification by substituting the gPC directly into the
first principles nonlinear model of the system; (ii) The use of the
maximum likelihood based estimation in combination with the gPC
model for fault detection; and (iii) The formulation of a bi-level
optimization for achieving an optimal tradeoff between control and
improved fault detection. The methodology is specifically targeted
to: (i) Balance the control performance and the fault detectability,
by synthesizing a FDD algorithm that is operated together with a
feedback controller; and (ii) Diagnose the stochastic faults consist-
ing of uncertainties around mean values that change intermittently,
using measurements collected immediately after the occurrence of
a step change on the mean values of the faults.

This paper is organized as follows. Section 2 presents the back-
ground and the principal methodologies used in this work. The
optimization problems formulated for simultaneously tuning the
FDD algorithm and the controller are given in Section 3. The pre-
sentation of the maximum likelihood based FDD algorithm is also
presented in Section 3. An endothermic continuous stirred tank
reactor (CSTR) is introduced as a case study in Section 4. Analysis
and discussion of the results are presented in Section 5 followed by
conclusions in Section 6.

2. Generalized Polynomial Chaos expansion

The Generalized Polynomial Chaos (gPC) expansion [20] rep-
resents an arbitrary continuous random variable of interest as a
polynomial series of another random variable with a given standard
distribution. Assume a set of nonlinear ordinary differential equa-
tions (ODEs) describe the dynamic behavior of a system:

ẋ = f (t, x, u; g)

0 ≤ t ≤ tf , x(0) ≤ x0
, (1)

where the vector x ∈ Rn contains the system states (measured vari-
ables) with initial conditions x0 ∈ Rn over time domain [0, tf], and
u denotes the known inputs of the system. The vector g ∈ Rng is
the unknown stochastic time varying input. Note that this work
assumes that the input vector g is the stochastic parametric faults of
interest. The ‘·’ notation over x signifies the derivative with respect
to time t. The function f is assumed to be the first principle model
of the process. To quantify the effect of stochastic inputs (faults)
g on the different measured variables, the gPC expansion can be
employed. To that purpose each unknown input gi (i = 1,2,. . .,ng) in
g is represented as a function of a set of random variables � = {�i}:

gi = gi(�i), (2)

where �i is the ith random variable. The random variables (� = {�i})
are assumed to be independent and identically distributed. Fol-
lowing the gPC expansion, the unknown stochastic faults (inputs)
g(�) and system states x(t,�) are described in terms of orthogonal
polynomial basis functions ˚k(�):

g(�) =
∞∑
k=0

gk˚k(�) (3)

x(t, �) =
∞∑
k=0

xk(t)˚k(�), (4)

where xk and gk are the gPC coefficients of measured variables
(states) and faults at each time instant t, ˚k(�) are multi-
dimensional orthogonal basis functions of � in the gPC theory. If
the input (g) can be measured or estimated, the coefficients of the
unknown input, gk, can be calculated such that (3) follows an a pri-
ori measured statistical distribution. Then, the gPCs representing
the measured quantities (states) responses resulting from this ran-
dom input can be calculated using a model of the process combined
with a Galerkin projection procedure [19]. By Galerkin projec-
tion it is possible to compute the expansion coefficients {xk(t)}
by projecting (1) onto each one of the polynomial chaos basis
functions{˚k(�)} as described in (5):

〈ẋ(t, �), ˚k(�)〉 = 〈f (t, x)(t, �), u(t), g(�), ˚k(�)〉 (5)

For practical application, (3) and (4) are often truncated to a
finite number of terms, i.e., P. Hence, the total number of terms in
(5) is a function of an arbitrary order p in (3) that is necessary to
represent an a priori known distribution of g and the number (ng)
of different faults (inputs) in vector g as follows:

P = ((ng + p)!/(ng!p!)) − 1 (6)
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