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a  b  s  t  r  a  c  t

A  class  of  parameter-dependent  dynamic  control  policies  is explored  for its use  in  a model  predictive
control  (MPC)  algorithm  for a nonlinear  system  modeled  with  a feedforward  neural  network  (NN).  The
NN-modeled  system  is expressed  as  a polytopic  quasi-linear-parameter-varying  (quasi-LPV)  system  over
a region  of  the  state-input  space  for a  range  of  operating  points,  and  the  dynamics  of  the  proposed  policy,
which  are  optimized  off-line  to enlarge  the  region  of  attraction,  are  allowed  to depend  on a time-varying
parameter  of  the  polytopic  quasi-LPV  system  model  such  that  the resulting  control  involves  a  continuous
gain-scheduling  that leads  to reduced  conservativeness.  A complete  MPC algorithm  using  the  dynamic
policy  as  the terminal  policy  ensures  stabilization  and  improved  control  performance  over  a  larger  domain
of attraction  without  a larger  horizon  length.  Simulation  examples  with  tank and  tubular  reactor  systems
illustrate  the  effective  performance  of the  proposed  approach  in practical  applications.
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1. Introduction

Model predictive control (MPC) is often regarded as one of the
most effective techniques available for the control of constrained
systems in the process industries. The technique uses a model of
plant dynamics to optimize control inputs in real time based on
the predicted plant behavior [1,2]. However, for many practical sys-
tems, which may  be nonlinear, an exact mathematical model of the
plant may  be difficult, if not impossible, to derive or express ana-
lytically in a simple, discrete-time form. One way of modeling such
a system is to use a suitable neural network (NN) to represent the
system dynamics. NN-based modeling has been considered in sev-
eral earlier works such as [3–9], and different control approaches
have been explored for the resulting system. While nonlineari-
ties may  be satisfactorily modeled using NNs, the resulting MPC
problem is usually significantly more complex than a linear MPC
problem.

Solving a nonlinear MPC  problem with a guarantee of stability is
usually computationally demanding. The traditional finite-horizon
nonlinear MPC  usually requires a sufficiently large horizon length
to ensure a reliable performance [10]. Computationally attractive
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alternatives have been proposed over the past several years [11–16]
and, relying on the fact that a nonlinear system can be modeled
as a quasi-linear-parameter-varying (quasi-LPV) system1 so that
its trajectories can be embedded into a linear difference inclusion
[[17], Section 4.3], some of these proposals (e.g., [12,13,15]) have
used approaches inspired by those designed for the robust-MPC-
and/or gain-scheduling-based solution to the control problem for
LPV systems, such as [18,19]. The resulting control ensures stabil-
ity but the solution is usually suboptimal and, in many cases, is
specific to a chosen fixed operating point. Nonlinear MPC  schemes
that are applicable for the tracking of a family of reference points
have been explored in a number of earlier works (e.g., [20–23]). The
authors in [20] have employed a pseudo-linearization of the system
to transform it into a constant linear system for all the desired oper-
ating points and considered a quasi-infinite-horizon MPC for the
transformed system. [21] has presented a scheme using an online
switching between a set of locally stabilizing robust static con-
trollers with overlapping regions of attraction. In [22], a dynamic
controller that is stabilizing for all the desired operating conditions
is assumed to exist and used as the terminal controller appended to
the standard MPC  law. A more general, and possibly less conserva-
tive, approach employing an auxiliary steady state as an additional

1 An LPV system is referred to as a quasi-LPV system if the parameters depend on
the system state and/or input.
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decision variable and a terminal set for the state-reference
combination is presented in [23], which actually extends the results
for linear systems in [24]. Most of these schemes (e.g., [20,22,23])
envisage the existence and the use of a terminal control policy that
offers a terminal region of attraction in order to ensure stability.
[20] also presents a method, albeit one that appears to be a bit
cumbersome, for the computation of the terminal controller and
its region of attraction, and [23] discusses various options including
the approach of [21] as the candidates for the terminal controller.
In the recent years, off-line-optimized dynamic-controller-based
MPC  policies have been proposed for a class of (uncertain) linear
systems [25–27] and they are found to be computationally attrac-
tive and also suitable for their use as the terminal control law (e.g.,
[27,28]). Clearly, an optimized dynamic control policy in line with
policies proposed for linear systems can reduce the conservative-
ness and improve the online computational efficiency of a nonlinear
MPC  scheme.

In this paper, we explore an optimized-dynamic-policy-based
stabilizing MPC  scheme to solve the nonlinear tracking problem for
a system whose dynamics may  be partly unknown and modeled
with a feedforward NN (ff-NN). Some preliminary studies in this
direction have been made in [29]. Here, we explore the problem
in a more general setting in which the operating point may not
be fixed at the time of design. We  train a NN to represent the
plant dynamics for a set of operating points and obtain a polytopic
quasi-LPV description of the NN-modeled system that is applicable
for any operating point in the chosen set. For this description, we
design a dynamic policy that depends on the time-varying parame-
ter of the LPV model and hence offers a less conservative domain of
attraction. However, since the usual dynamic policies in [25,26], etc.
are designed with an underlying assumption that the parameter is
uncertain, these policies allow only the predicted future control
inputs to depend on the value of the parameter, thus resulting in
a kind of ‘virtual’ gain scheduling. In the context of a quasi-LPV
system, the parameter may  not be really uncertain. Therefore, we
propose a more general form of the policy with controller dynamics
parameterized quadratically in terms of the time-varying param-
eter. Such a parameterization allows an actual gain-scheduling
such as in [30] and usually results in a less conservative domain
of attraction and possibly a better control performance. We also
incorporate, in the policy dynamics, approximation errors arising
from the NN-based modeling to avoid conservativeness due to such
errors. Finally, when the dynamic policy is used as the terminal
policy in the MPC  formulation, since it enlarges the stabilizing ter-
minal set while also allowing an optimization of the terminal input
sequence, the overall MPC  solution can be expected to offer stabil-
ity and optimality over a larger domain without a larger horizon
length.

We present a successive-quadratic-programming (succ-QP)-
based algorithm to solve the overall nonlinear MPC  problem for
the NN-modeled system. Some earlier works on finite-horizon
MPC for NN-modeled systems such as [3,8] have used successive
substitution/optimization methods and obtained feasible solutions
considering the nonlinear part as an additional constant disturb-
ance. However, such solutions are only approximate, and offer no
guarantee of feasibility and stability. The algorithm in this paper
handles the dynamics-related nonlinear constraints in the finite
horizon by imposing linearized versions of the constraints and
employs the proposed dynamic policy as the stabilizing termi-
nal policy. The finite-horizon part of the algorithm resembles the
approach discussed in [31,32] and also employed in different vari-
ants in other papers such as [9]. Since the analytical expression
for the output of the NN allows an efficient online linearization, the
proposed algorithm offers an improved performance, together with
a guarantee of stability in an efficient way. We  assess and illustrate
the performance of the proposed approach with several numer-

ical examples including those dealing with the tank and tubular
reactors. The example with a tubular reactor presents the case of
an MPC-oriented modeling and effective control of a distributed
parameter system.

Notations: I(In) denotes an identity matrix (of size n) and 1
denotes a vector of all ones. �a� represents the smallest integer
larger than a. For vectors x and y, (x ; y) represents the stacked vec-
tor [xT yT]

T
. For a vector x, diag(x) denotes a diagonal matrix with

the components of x along its diagonal. For a matrix X, X[i,:] denotes
its ith row and X[i,j] denotes its element on the ith row and jth col-
umn. For matrices X and Y, X ⊗ Y denotes their Kronecker product,
and diag(X,Y) represents a block diagonal matrix with X and Y as
blocks. The signs �, ≺ etc. denote positive/negative (semi-) defi-
niteness of matrices. Z+ and R+ represent the sets of non-negative
integers and real numbers respectively. For two sets U and V, U ⊕ V
denotes their sum, U 	 V denotes the difference, U ∪ V denotes their
union and U\V represents the complement of V in U. Co denotes a
convex hull. A convex and compact set with the origin in its interior
is denoted as a C-set.

2. Problem description

We  consider a plant described by dynamics of the form

xa(t + 1) = f (xa(t), ua(t)) (1)

where xa(t) ∈ Rnx and ua(t) ∈ Rnu represent the actual state of the
plant and the control input applied. The function f(. , .) is supposed
to be continuous but it may  not be fully known or may be difficult
to be expressed analytically in a simple form.

We assume that it is known through simulations, experiments
or analyses that the system can be steadily maintained at any
point xo in a set Xo with a respective control input uo ∈ Uo so
that an appropriately defined system output ya(t) = g(xa, ua) can be
maintained at the respective set-point ra ∈ R. The control objec-
tive at any time t is to drive the system to such a steady state.
The system state and the control input are supposed to satisfy
the constraints xa(t) ∈ Xa and ua(t) ∈ Ua, where Xa and Ua are
C-sets.

Given a set-point ra ∈ R and the corresponding steady state-
input pair (xo, uo), we wish to compute, at each time instant t, a
sequence of predicted control inputs ua(t + i|t), i ∈ Z+ that mini-
mize a cost function of the form

J(t) =
∞∑
i=0

{∥∥∥Q 1
2 (xa(t + i|t) − xo)

∥∥∥2
+

∥∥∥R 1
2 (ua(t + i|t) − uo)

∥∥∥2
}
,

Q 
 0, R 
 0 (2)

so that the closed-loop system state under the receding horizon
control ua

∗
(t) = ua

∗
(t|t) is driven to and maintained at the point xo

in some optimal way.
Defining x(t) = xa(t) − xo and u(t) = ua(t) − uo, we note that the

problem of driving the system to a steady state-input pair (xo, uo)
is equivalent to steering (x(t), u(t)) to the origin. In the following
sections, we discuss an appropriate modeling of dynamics of x(t)
with a suitable ff-NN and then present an MPC  procedure based
on the resulting nonlinear model. We assume that it is possible to
obtain a sufficiently rich set of input/output data from experiments
or simulations such that the dynamics can be modeled with a NN
of an appropriate structure.
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