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a  b  s  t  r  a  c  t

The  advanced  control  of  microalgal  cultures  usually  requires  the  knowledge  of  several  component  con-
centrations,  which  are  however  not  always  measurable  on-line.  In  this  context,  state  estimation  plays  an
important  role, and  software  sensors  should  be  robust  to  model  uncertainties  and  measurement  noise.  In
this  study,  two  software  sensors  are  designed  in  the  form  of extended  Luenberger  observers,  using Lya-
punov  arguments  and  linear  matrix  inequalities  (LMI).  These  observers  are  based  on Droop  model  and  a
few available  on-line  sensors.  The  first  observer  design  estimates  the  intracellular  quota  and  substrate
concentrations  considering  a linear  differential  inclusion  modeling  technique  and  a  constant  observer
gain.  On  the  other  hand,  the  second  one  estimates  only  the  intracellular  quota  concentration  assuming
uncertainties  in  the model  parameters  and  a quasi-Linear  Parameter  Varying  (quasi-LPV)  representation
of  the  nonlinear  system.  The  results  are  presented  considering  simulated  and  experimental  data  from
Dunaliella  tertiolecta  culture.

©  2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

In the last two decades, microalgal cultivation has received an
ever increasing attention in relation to the large panel of poten-
tial applications ranging from biofuels to pigments, cosmetics,
nutrients and wastewater treatment [1,2]. To achieve continu-
ous production, the use of monitoring and control techniques is
of paramount importance but is hampered by the lack of on-line
instrumentation. To alleviate this difficulty, observers, or software
sensors ([3–6] and the references therein) are an appealing alterna-
tive to costly on-line hardware probes. State estimation techniques
blend the predictive capability of a dynamic model of the process
under consideration, and the corrective action that available on-
line information can provide.

The first component of a software sensor is therefore a dynamic
process model. Several dynamic models describing microalgal
growth as a function of environmental variables such as nutrients
and light can be found in the literature (see for instance [7] for a nice
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overview of the subject). In this work, a simple, yet representative,
model proposed by Droop [8] is considered. This model is one of
the earliest and most accepted microalgal growth models describ-
ing the ability of microalgae to store nutrients and the decoupling
between substrate uptake and biomass growth. Nutrient storage
is represented by an intracellular variable called quota Q, which is
defined as the concentration of internal nutrient per concentration
of biomass. Even tough the model was original developed consid-
ering a limitation in vitamin B12, it has since then demonstrated
its large applicability for other limiting substrates such as nitrate,
phosphate or silicate [9,10]. Nitrate depletion is of particular inter-
est in applications related to the production of biofuels.

The second component is a nonlinear state estimation tech-
nique. According to Ref. [3], two main categories of observers can
be applied to bioprocesses: the asymptotic observers and the expo-
nential observers. The first ones do not require the knowledge of
the kinetics, but their speed of convergence cannot be adjusted by
the user. In contrast, exponential observers require a good-quality
model, but their rate of convergence toward the real state can be
adjusted via some tuning parameters. The extended Kalman fil-
ter [11], the extended Luenberger observer [12] and the high gain
observer [14] are examples of exponential observers. However,
the main drawback of these observers regards the strong depen-
dency on the model quality and consequently the high sensitivity
to parameter uncertainties [15].
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To deal with parameter uncertainties while guaranteeing
bounded estimation errors, several robust estimation techniques
were proposed in the literature in the last decade. Especially, inter-
val observers [16], which provide lower and upper bounds of the
state trajectory based on the knowledge of guaranteed intervals
for the uncertain parameters (as well as possible uncertain initial
conditions and inputs), have been applied to bioprocesses. In par-
ticular, these observers have been applied to microalgal cultures in
Refs. [17,18] with satisfactory performance. However, the design of
controllers based on these interval observers is more delicate than
with conventional (single-valued) observers.

The intent of this study is to consider another class of robust
state estimation methods, namely robust extended Luenberger
observers (ELO) as proposed in Refs. [19–22], which make use of
Lyapunov stability theory and convex optimization techniques to
ensure an upper bound on the norm of the estimation error.

More specifically, two observers are designed:

• An ELO for the estimation of the extracellular substrate con-
centration and the intracellular quota from the measurement of
biomass only. This nonlinear observer uses the Lyapunov theory
to ensure stability and linear differential inclusion (LDI) model-
ing of the state error dynamics [24]. The design conditions are
expressed in terms of linear matrix inequality (LMI) constraints,
and lead to the determination of a static correction gain.

• A second ELO for the estimation of the intracellular quota from
the measurement of the extracellular substrate and biomass
concentrations. The design not only considers the model non-
linearities, but also takes model uncertainties into account in a
way similar to [19]. To deal with system nonlinearities, Droop
model is represented as a quasi-Linear Parameter Varying (quasi-
LPV) system [25]. In other words, the system nonlinearities are
viewed as bounded time-varying parameters. The advantage of
this representation is that the nonlinearities are hidden into
bounded parameters allowing the application of well-established
robust control theory. In addition, for designing a gain schedul-
ing mechanism, the bounded parameters are split into two groups
depending on whether they can be measured online or not. The
non-measurable parameters are considered as model uncertain-
ties, whereas the measurable parameters are used to schedule
the observer gain. Moreover, an H∞ design is applied to attenuate
modeling errors on the norm of the estimation error [26].

Prior to the observer design an observability analysis is achieved
following [27]. Finally, the observers are tested in simulation
and with experimental data collected from a lab-scale photo-
bioreactor.

This paper is organized as follows. The next section presents
Droop model and the lab-scale experimental set-up used for
microalgal cultivation. The two robust observers are designed in
Section 3, and tested both in simulation and real-case situations
in Section 4. Finally, Section 5 is dedicated to conclusions and per-
spectives.

2. Process description and Droop model

The Droop model [9] describes the growth of microalgae cul-
tivated in a photobioreactor, under constant temperature and
illumination conditions. This model uncouples the microalgae
growth from substrate uptake and describes the growth rate as a
function of the internal quota concentration of a limiting nutrient.
This latter nutrient is essential for growth, can be stored in periods
of abundance, and limits growth in periods of scarcity. Originally,
Droop considered vitamin B12 as the limiting nutrient, but more
recent works [9,10] have demonstrated the model adequacy when,

Fig. 1. Lab-scale flat-panel photobioreactor.

for instance, nitrogen, phosphate or silicate play the role of lim-
iting nutrients. In this work, nitrogen is the limiting nutrient as
considered, for instance, in Ref. [7]. This situation is particularly
interesting when studying the production of biofuels, where the
accumulation of lipids within the microalgae can be triggered by
nitrogen depletion.

Droop model is often the corner stone of more elaborate models,
including additional effects such as temperature, light irradiance,
photoacclimation and inhibition [7,28].

The following differential equation model, Eq. (1), expresses the
mass balances in a continuous bioreactor. It includes three state
variables, i.e., the concentration of biomass X, the concentration of
substrate S, and the intracellular quota Q.

Ẋ = � (Q ) X − DX

Ṡ = −� (S) X − DS + DSin

Q̇ = � (S) − � (Q ) Q

(1)

The dilution rate D = Fin/V is the ratio between the inlet flow rate and
the volume of the culture. Here, we assume continuous operation
with constant volume, i.e., a chemostat. The uptake rate � (S) is
defined by the following Monod law:

� (S) = �m
S

S + Ks
(2)

where Ks is the half saturation constant of substrate and �m is the
maximum inorganic nitrogen uptake rate of limiting substrate.

Droop proposed that the microalgal growth rate depends on the
intracellular quota as shown in Eq. (3) instead of the external sub-
strate concentration. Hence, microalgae can still grow when the
external substrate is exhausted, but reserves are available in the
internal pool.

� (Q ) = �m

(
1 − Q0

Q

)
(3)

In this latter expression, Q0 is the minimum cell quota identified
empirically by Droop under which microalgae do no longer grow,
and �m is the maximum growth rate.

In order to investigate the performance of state estimation tech-
niques in realistic conditions, an experimental system has been
set-up at the University of Mons, which is shown in Fig. 1.

This system consists of a 13 L flat-panel photobioreactor (PBR),
illuminated from one side by a set of six fluorescent tubes placed
vertically and parallel to the front side of the reactor, with the
same height and width as the reactor. These fluorescent tubes
of 18 W each are dimmable and used generally in horticulture
applications (Fluora 18 W/77, Osram). The main emitted wave-
lengths are located in the visible spectrum (blue (430 nm)  and red
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