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a  b  s  t  r  a  c  t

In this  paper,  we  present  adaptive  iterative  learning  control  (ILC)  schemes  for  discrete  linear  time-
invariant  (LTI)  stochastic  system  with  batch-varying  reference  trajectories  (BVRT).  If reference  trajectories
change  every  batch,  ILC  shows  a different  convergence  property  from  that of  the  identical  reference  tra-
jectory.  First,  we  derive  the  convergence  property  and  propose  deterministic  adaptive  ILC  combined  with
iterative  learning  identification  for LTI system  with  BVRT.  If the state  noise  and  measurement  noise  exist,
convergence  rate  and  tracking  performance  are  degraded  because  the  controller  considers  the  difference
arising  from  the  noise  as  tracking  error.  To  deal with  such  a problem,  we  propose  two  approaches.  The
first is based  on  a batch-domain  Kalman  filter,  which  uses  the  difference  between  the  current  output
trajectory  and  the  next  reference  trajectory  as  a state  vector,  while  the  second  is based  on  a  time-domain
Kalman  filter.  In  the second  approach,  the  system  is identified  at  the end  of each  batch  in  an  iterative
fashion  using  the  observer/Kalman  filter  identification  (OKID).  Then,  the  stochastic  problem  is  handled
using  Kalman  filter  with  a steady-state  Kalman  gain  obtained  from  the identification.  Therefore,  the
second  approach  can  track  the  reference  trajectories  of  discrete  LTI  stochastic  system  using only  the
input–output  information.  Simulation  examples  are  provided  to show  the  effectiveness  of the  proposed
schemes.

©  2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Iterative learning control (ILC) is an effective control scheme in handling a system repeating the same task on a finite interval. Iterative
learning controller controls a system in batch or iteration domain, while general controller, PID, LQR or MPC, controls a system in time
domain. In the ILC, the input values for the entire time of the next batch operation are computed using input and output values of the
current batch. ILC was first introduced for robot manipulators; in addition, it has been implemented in many industrial processes such as
semiconductor manufacturing and chemical processes [1–6]. Most of the ILC schemes focus on tracking batch-invariant reference trajectory.
Recently, several ILC schemes have been studied for tracking batch-varying references [7–9], and they use a recursive least squares algorithm
to update the parameters iteratively along the batch index. Our previous work [10] also handles a system with batch-varying references
using lifted system framework and iterative learning identification. However, these studies present methods for deterministic system
only.

In this paper, we present adaptive ILC schemes for discrete linear time-invariant (LTI) stochastic system with batch-varying reference
trajectories (BVRT). In batch processes (polymerization reactor or rapid thermal process), reference trajectory can be changed in case feed
conditions, start up speed or shut down speed needs to be varied. New reference trajectory can be calculated from off-line optimization. In
addition, products with various specifications can be produced from the same system. For example, one etching system in semiconductor
manufacturing can produce wafers with various critical dimensions if the system can track BVRT. If the system has BVRT, convergence
property of ILC differs from traditional ILC which aims at tracking an identical reference trajectory [10]. In this case, we  should identify
precise Markov parameters of system dynamics. Hence, we  introduce iterative learning identification to satisfy convergence condition. In
case of stochastic system, the presence of noises decreases the convergence rate and performance. This is because the controller considers

∗ Corresponding author. Tel.: +82 2 880 1878; fax: +82 2 888 1604.
E-mail address: jongmin@snu.ac.kr (J.M. Lee).

http://dx.doi.org/10.1016/j.jprocont.2015.09.008
0959-1524/© 2015 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.jprocont.2015.09.008
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jprocont.2015.09.008&domain=pdf
mailto:jongmin@snu.ac.kr
dx.doi.org/10.1016/j.jprocont.2015.09.008


S.-K. Oh, J.M. Lee / Journal of Process Control 36 (2015) 64–78 65

noise as tracking error. To handle these issues, we propose two  Kalman filter-based approaches. In case of batch-to-batch control problem,
Kalman filter can be used in either time-domain or batch-domain. We  apply Kalman filter in both the domains, and then compare the rate
and tracking performance of the two approaches. In the first approach, we  use Kalman filter in the batch-domain. Ahn et al. [11] proposed
Kalman filter-augmented iterative learning control. This method can be applied only if a system has an identical reference trajectory and a
fixed learning gain matrix. Hence, we extend the method to handle BVRT and batch-varying learning gain matrix. In the second approach,
system Markov parameters are identified using the observer/Kalman filter identification (OKID) [12] in an iterative learning manner. The
OKID algorithm is numerically efficient and robust with respect to measurement noise if the output residual error is zero-mean and
Gaussian noise [13]. It also provides steady-state Kalman gain and system Markov parameters. With the steady-state Kalman gain, we  can
use the general Kalman filter in the time-domain for handling stochastic issue without covariance information of state and measurement
noises. Therefore, the second approach uses only input–output information. The comparative results of the two approaches are provided
in Section 4.

The rest of this paper is organized as follows: In Section 2, the deterministic ILC scheme for BVRT and convergence property are
presented. In Section 3, the two Kalman filter-based approaches are proposed for handling stochastic issue. Then, numerical illustrations
are provided in Section 4. Section 5 provides concluding remarks.

2. ILC for batch-varying reference trajectories

2.1. Convergence property for ILC with batch-varying reference trajectories

First, we consider the following linear discrete time-invariant system which operates on an interval t ∈ [0, N]:

xk(t + 1) = Axk(t) + Buk(t)

yk(t) = Cxk(t)
(1)

where xk(t) ∈ R
n is the state vector; uk(t) ∈ R

m is the input vector; yk(t) ∈ R
q is the output vector; t is the time index; k is the batch index;

and the matrices A, B, and C are real matrices of appropriate dimensions and assumed to be time-invariant. Because finite time intervals
[0, N] are considered in ILC, this system can be rewritten as a lifted system:

yk = Gpuk (2)

with xk(0) = 0 and the plant matrix Gp = R
(qN)×(mN) defined as

Gp =

⎡
⎢⎢⎢⎣

CB 0 · · · 0

CAB CB · · · 0
...

...
. . .

...

CAN−1B CAN−2B · · · CB

⎤
⎥⎥⎥⎦ (3)

and the vectors yk ∈ R
qN, and uk ∈ R

mN are defined as

yk =
[

yT
k
(1) yT

k
(2) · · · yT

k
(N)

]T
(4)

uk =
[

uT
k
(0) uT

k
(1) · · · uT

k
(N − 1)

]T
(5)

The system matrix Gp is a Markov matrix with a lower triangular Toeplitz structure.
The most general input update law of the conventional ILC with batch-invariant reference trajectory is represented by

uk+1 = uk + H(r − yk) = uk + Hek where H is a learning gain matrix, and r is a reference trajectory. It is assumed that input trajectory for
next batch is calculated when the current batch operation is finished. Thus, uk+1 is calculated using available information uk and yk. In this
case, it is well known that ek → 0 as k→ ∞ if ‖I − GpH ‖ ∞ < 1 where I is the identity matrix [14]. In the conventional ILC formulation, yk
converges to the same reference r for all batches. Hence, it is possible to make the output converge as long as we  know the values of the
error and the model satisfying the convergence condition. If the reference trajectories are varied in batches, we should know not only the
values of the error but also the input variation necessary to move the output from the current reference rk to the next reference rk+1. The
desired input of (k + 1)-th batch can be expressed as the following form:

ud
k+1 = uk + (ud

k+1 − uk) (6)

where ud
k+1 is the desired input for next reference rk+1. With the plant description of yk = Gpuk and rk+1 = Gpud

k+1, Eq. (6) can be rewritten
as:

ud
k+1 = uk + G−1

p (rk+1 − yk) (7)

In the ILC problem, it is assumed that the plant matrix Gp is unknown or not invertible. Hence, we introduce batch-varying learning gain
matrix to obtain input update law of the ILC for BVRT:

uk+1 = uk + Hk(rk+1 − yk) (8)

Theorem 1. Consider the linear system (1) and the ILC controller (8). The system is convergent if Hk is chosen such that GpHk = I.
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